1. By the way:

\ creates a space in Latex when something doesn't immediately follow it.

For example

James Jarvis (with the [tex] wrapped around of course)

$\displaystyle James Jarvis$

But James \ Jarvis

$\displaystyle James \ Jarvis$

2. Sorry! Im trying to write v= K x ln(1/x) K being constant and x being algibraic x.

Thanks.

3. Originally Posted by james jarvis
Sorry! Im trying to write v= K x ln(1/x) K being constant and x being algibraic x.

Thanks.
V = K \times ln( \frac{1}{x} )

$\displaystyle V = K \times ln( \frac{1}{x} )$

4. $\displaystyle V = K x ln( \frac{1}{x} )$

5. I'd write it as

$\displaystyle V=K\cdot\ln\frac1x.$ Or $\displaystyle V=K\times\ln\frac1x.$

Click on the LaTeX images to see their codes.

6. Originally Posted by Krizalid
I'd write it as

$\displaystyle V=K\cdot\ln\frac1x.$ Or $\displaystyle V=K\times\ln\frac1x.$

Click on the LaTeX images to see their codes.
It seems both x's are letters, not a multiplication sign

7. Originally Posted by janvdl
V = K \times ln( \frac{1}{x} )

$\displaystyle V = K \times ln( \frac{1}{x} )$
use \ln as opposed to ln

and use \left( \frac 1x \right) as opposed to ( \frac 1x )

you will get $\displaystyle \ln \left( \frac 1x \right)$ which looks nicer than $\displaystyle ln( \frac 1x)$

personally, i like using ~ for space, so i'd type James~Jarvis

8. $\displaystyle f(x)|^b_a=f(b)-f(a)$

I'd like to know the correct code for the long bar

Thank you

9. Hello, Paul!

$\displaystyle f(x)|^b_a=f(b)-f(a)$

I'd like to know the correct code for the long bar

I use: .f(x) \bigg | ^b _a

. . and get: .$\displaystyle f(x) \bigg|^b_a$

10. Originally Posted by PaulRS
$\displaystyle f(x)|^b_a=f(b)-f(a)$

I'd like to know the correct code for the long bar
Ya te dieron una posibilidad, la otra es que uses

\Big| ; \big| o como es común \left| para abrir y luego \right| para cerrar. En realidad esto último se adecúa a la expresión (tamaño de ésta), y se extiende.

Eventualmente, usaría $\displaystyle f(x)\Big|^b_a$

Donde aplicamos \Big|.

Saludos

11. First time using LaTex and first post!
Testing...

$\displaystyle \frac {x^{n+1}}{x^{n-1}}$

$\displaystyle log_{7}7^k=k$

$\displaystyle x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$

$\displaystyle \int_{0}^{50}(x)=1250$

$\displaystyle f(x)=3+\frac{x-2}{x+3}$

$\displaystyle \frac{d}{dx}3x^k=3kx^{k-1}$

This is

12. $\displaystyle \frac{\sqrt{3}}{2}$

13. $\displaystyle IFF~ \frac{d}{dx}F(x)=f(x)$ for $\displaystyle a\leq x\leq b$

$\displaystyle \lim_{n\rightarrow\infty}\sum^n_{i=1}{f\left(x+\le ft(\frac{b-a}{n}\right)i\right)}\left(\frac{b-a}{n}\right)~=~\int^b_a{f(x)}dx~=~F(x)\bigg |^b_a~=~F(b)-F(a)$

14. $\displaystyle log_2\;x\;+\;log_2\;y\;=\;3\quad\Rightarrow x\;+\;y\;=\;8$

$\displaystyle 6\cdot6=36$

$\displaystyle \sum ^{\infty}_{i=1}$

15. Testing
mmm I get an error, back to the books
$\displaystyle \ \int_0^a {\sqrt {(1 + t} ^2 )dt} \$

Page 3 of 7 First 1234567 Last