1. By the way:

\ creates a space in Latex when something doesn't immediately follow it.

For example

James Jarvis (with the [tex] wrapped around of course)

$James Jarvis$

But James \ Jarvis

$James \ Jarvis$

2. Sorry! Im trying to write v= K x ln(1/x) K being constant and x being algibraic x.

Thanks.

3. Originally Posted by james jarvis
Sorry! Im trying to write v= K x ln(1/x) K being constant and x being algibraic x.

Thanks.
V = K \times ln( \frac{1}{x} )

$V = K \times ln( \frac{1}{x} )$

4. $V = K x ln( \frac{1}{x} )$

5. I'd write it as

$V=K\cdot\ln\frac1x.$ Or $V=K\times\ln\frac1x.$

Click on the LaTeX images to see their codes.

6. Originally Posted by Krizalid
I'd write it as

$V=K\cdot\ln\frac1x.$ Or $V=K\times\ln\frac1x.$

Click on the LaTeX images to see their codes.
It seems both x's are letters, not a multiplication sign

7. Originally Posted by janvdl
V = K \times ln( \frac{1}{x} )

$V = K \times ln( \frac{1}{x} )$
use \ln as opposed to ln

and use \left( \frac 1x \right) as opposed to ( \frac 1x )

you will get $\ln \left( \frac 1x \right)$ which looks nicer than $ln( \frac 1x)$

personally, i like using ~ for space, so i'd type James~Jarvis

8. $f(x)|^b_a=f(b)-f(a)$

I'd like to know the correct code for the long bar

Thank you

9. Hello, Paul!

$f(x)|^b_a=f(b)-f(a)$

I'd like to know the correct code for the long bar

I use: .f(x) \bigg | ^b _a

. . and get: . $f(x) \bigg|^b_a$

10. Originally Posted by PaulRS
$f(x)|^b_a=f(b)-f(a)$

I'd like to know the correct code for the long bar
Ya te dieron una posibilidad, la otra es que uses

\Big| ; \big| o como es común \left| para abrir y luego \right| para cerrar. En realidad esto último se adecúa a la expresión (tamaño de ésta), y se extiende.

Eventualmente, usaría $f(x)\Big|^b_a$

Donde aplicamos \Big|.

Saludos

11. First time using LaTex and first post!
Testing...

$\frac {x^{n+1}}{x^{n-1}}$

$log_{7}7^k=k$

$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$

$\int_{0}^{50}(x)=1250$

$f(x)=3+\frac{x-2}{x+3}$

$\frac{d}{dx}3x^k=3kx^{k-1}$

This is

12. $
\frac{\sqrt{3}}{2}
$

13. $IFF~ \frac{d}{dx}F(x)=f(x)$ for $a\leq x\leq b$

$\lim_{n\rightarrow\infty}\sum^n_{i=1}{f\left(x+\le ft(\frac{b-a}{n}\right)i\right)}\left(\frac{b-a}{n}\right)~=~\int^b_a{f(x)}dx~=~F(x)\bigg |^b_a~=~F(b)-F(a)$

14. $log_2\;x\;+\;log_2\;y\;=\;3\quad\Rightarrow x\;+\;y\;=\;8$

$6\cdot6=36$

$
\sum ^{\infty}_{i=1}
$

15. Testing
mmm I get an error, back to the books
$
\
\int_0^a {\sqrt {(1 + t} ^2 )dt}
\
$

Page 3 of 7 First 1234567 Last