Results 1 to 3 of 3

Math Help - Test

  1. #1
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    11,806
    Thanks
    697

    Test


    . . \Large\begin{array}{c} \curlyvee\!\! \curlyvee\!\! \curlyvee\! \curlyvee \\ [-3.6mm] \curlywedge\!\! \curlywedge\!\! \curlywedge\! \curlywedge \\ [-3.3mm] \curlyvee\!\! \curlyvee\!\! \curlyvee\! \curlyvee \\ [-3.6mm] \curlywedge\!\! \curlywedge\!\! \curlywedge\! \curlywedge  \end{array}

    . . . \huge\begin{array}{c}\top\!\!\!\! \dashv \\ [-6.5mm] \vdash\:\!\!\!\!\! \bot \end{array}


    . . \large \begin{array}{cc}\backslash\text{curlyvee} & \curlyvee \\ \backslash\text{curlywedge} & \curlywedge \\ \backslash\text{top} & \top \\ \backslash\text{bot} & \bot \\ \backslash\text{vdash} & \vdash \\ \backslash\text{dashv} & \dashv \\ \backslash\text{maltese} &  \maltese \\ \backslash\text{multimap} & \multimap \\ \backslash\text{circledcirc} & \circledcirc \\ \backslash\text{boxdot} & \boxdot \\ \backslash\text{boxplus} & \boxplus \\ \backslash\text{boxtimes} & \boxtimes  \end{array} \qquad\begin{array}{cc} \backslash\text{varkappa} & \varkappa \\ \backslash\text{Cup} & \Cup \\ \backslash\text{Cap} & \Cap \\ \backslash\text{Subset} & \Subset \\ \backslash\text{Supset} & \Supset \\  \backslash S & \S  \\ \backslash\text{between} & \between  \\ \backslash\text{checkmark} & \checkmark \\ \backslash\text{bowtie} & \bowtie \\ \backslash\text{divideontimes} & \divideontimes \\ \backslash\text{Rrightarrow} & \Rrightarrow \\ \backslash\text{Lleftarrow} & \Lleftarrow \end{array}

    Last edited by Soroban; July 5th 2011 at 04:33 AM.
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Super Member
    Joined
    Mar 2006
    Posts
    705
    Thanks
    2

    Re: Test

     \frac { 5(x^2 y^3 z ^{1/2})^{-4} }{20(x^3 y^{-2} z^1)^5}

    = \frac { 1 x^{-8}y^{-12}z^{-2}}{4x^{15}y^{-10}z^5}

    = \frac {1}{4}x^{-8-15}y^{-12-(-10)}z^{-2-5}

    = \frac {1}{4}x^{-23}y^{-2}z^{-7}

    = \frac {1}{4x^{23}y^2z^7}
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Newbie
    Joined
    Oct 2011
    Posts
    3

    Re: Test

    TEST
    I try to do the following integral

    \left \int_0^t v(t) = \int_0^t v_0 + v_c \{sin(\omega t + \phi) - sin(\phi)\} \right

    I end up with x(t) = x_0 + (\frac{v_c}{\omega})  \{cos \phi - cos(\omega t + \phi)\}

    but the answer should be

    x(t) = x_0 + (\frac{v_c}{\omega})  \[\{(\frac{v_o}{v_c}) - sin \phi\} \omega t + cos \phi - cos(\omega t + \phi)\}

    So basically I have it correct but I just can't see where the term

    \{(\frac{v_o}{v_c}) - sin \phi\} \omega t

    comes from - would be extremely grateful for any help in the matter
    Last edited by mbds42; October 9th 2011 at 03:37 PM.
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Replies: 2
    Last Post: May 21st 2010, 09:56 AM
  2. Replies: 8
    Last Post: March 28th 2010, 05:45 PM
  3. Replies: 7
    Last Post: June 4th 2009, 09:33 PM
  4. Huh? Ratio test contradicts root test?
    Posted in the Calculus Forum
    Replies: 4
    Last Post: March 25th 2009, 12:07 PM
  5. ratio test (series) urgent test tommorow!
    Posted in the Calculus Forum
    Replies: 3
    Last Post: December 2nd 2008, 03:27 PM

Search Tags


/mathhelpforum @mathhelpforum