Originally Posted by

**Prove It** First of all, when dealing with solving exponential equations, the EXPONENTIAL form of the complex number is ALWAYS easiest to use...

$\displaystyle \begin{align*} z^3 &= \mathrm{i} \\ z^3 &= \mathrm{e}^{\left( \frac{\pi}{2} + 2\pi\,n \right) \mathrm{i}} \textrm{ where } n \in \mathbf{Z} \\ z &= \left[ \mathrm{e}^{\left( \frac{\pi}{2} + 2\pi\,n \right) \mathrm{i}} \right] ^{\frac{1}{3}} \\ z &= \mathrm{ e }^{ \frac{\pi}{6} + \frac{2\pi\,n}{3} } \end{align*}$

So in the first cycle, the possible solutions are $\displaystyle \begin{align*} \mathrm{e}^{\frac{\pi}{6}}, \mathrm{e}^{\frac{5\pi}{6}} , \mathrm{e}^{\frac{3\pi}{2}} \end{align*}$, which in Cartesian form are:

$\displaystyle \begin{align*} \mathrm{e}^{\frac{\pi}{6}} &= \cos{ \left( \frac{\pi}{6} \right) } + \mathrm{i}\sin{\left( \frac{\pi}{6} \right) } \\ &= \frac{\sqrt{3}}{2} + \frac{1}{2}\mathrm{i} \\ \\ \mathrm{e}^{\frac{5\pi}{6}} &= \cos{ \left( \frac{5\pi}{6} \right) } + \mathrm{i}\sin{ \left( \frac{5\pi}{6} \right) } \\ &= -\frac{\sqrt{3}}{2} + \frac{1}{2}\mathrm{i} \\ \\ \mathrm{e}^{\frac{3\pi}{2}} &= \cos{ \left( \frac{3\pi}{2} \right) } + \mathrm{i}\sin{ \left( \frac{3\pi}{2} \right) } \\ &= -\mathrm{i} \end{align*}$