1. ## cos72 without calculator

how I can find cos(72) without calculator

I know that
$\displaystyle cos(72^o)=\frac{\sqrt{5}-1}{4}$

but how ??

2. Originally Posted by Amer
how I can find cos(72) without calculator

I know that
$\displaystyle cos(72^o)=\frac{\sqrt{5}-1}{4}$

but how ??
Trigonometry Angles--Pi/5 -- from Wolfram MathWorld

3. Originally Posted by Amer
how I can find cos(72) without calculator

I know that
$\displaystyle cos(72^o)=\frac{\sqrt{5}-1}{4}$

but how ??

$\displaystyle 72\text{ deg} \cdot \frac{\pi \text{ rad}}{180\text{ deg}}= \frac{2\pi}{5}\text{ rad}.$

Now by double angle, $\displaystyle \cos \left(\frac{2\pi}{5}\right)=2\cos^2\left(\frac{\pi }{5}\right) - 1$.

Find $\displaystyle \cos\left(\frac{\pi}{5}\right)$ either by using a table, or by de Moivre's Formula.

4. ... or whistleralley.com/polyhedra/pentagon.htm for a nice account of the geometry of a regular pentagon and its connection with the golden ratio.

5. Originally Posted by Opalg
... or http://whistleralley.com/polyhedra/pentagon.htm for a nice account of the geometry of a regular pentagon and its connection with the golden ratio.
Pentagon

6. Working out in degrees, we have
Let x =72 degrees, multiply both sides by 5;
5x = 360
2x + 3x = 360
2x = 360-3x

Then, taking cos of both side
cos 2x = cos(360 -3x)
cos 2x = cos 3x

Using an identity for double angle and triple angle, equating them we have
2cos^2 x -1= 4cos^3 x - 3 cos x
4cos^3 x - 2cos^2 x - 3 cos x +1=0
4cos^3 x - 4cos^2 x + 2 cos^2 x - 2 cos x - cos x +1=0
4cos^2x(cos x -1) +2cos x( cos x -1) -1( cos x - 1) =0
(cos x - 1) (4cos^x +2 cos x - 1) =0

Either cos x =0 means x=90 degree
Solve (4cos^x +2 cos x - 1) =0

cos x = [-2 +(plus or minus){sq rt (4+16)] /8
cos x = [-2 +(plus or minus){sq rt (20)] /8
cos x = [-2 +2(plus or minus){sq rt (5)] /8
cos x = [-1 +(plus or minus){sq rt (5)] /4

Neglecting NEGATIVE values of cos x, because x lies in first quadrant
Therefore cos 72 degrees = (sqrt(5) -1)/4

cos 72 = 0.30901699437494742410229341718 . . . .

7. Thanks guys I get it

,

,

,

,

,

,

,

,

,

,

,

,

,

# find the value of cos 72

Click on a term to search for related topics.