# intersection of planes

• Jun 4th 2009, 06:29 PM
checkmarks
intersection of planes
1. The line of intersection of the planes 2x+y-3z=3 and x-2y+z=-1 is L. If L meets the xy plane at Point A and the z-axis at Point B, determine the length of line segment AB.

2. Determine the Cartesian equation of the plane that is parallel to the line with equation x = -2y = 3z and that contains the line of intersection of the planes with equation x-y+z=1 and 2y-z=0

Thanks, any help is greatly appreciated!
• Jun 4th 2009, 07:45 PM
Soroban
Hello, checkmarks!

Quote:

1. The line of intersection of the planes: $2x+y-3z\:=\:3\:\text{ and }\:x-2y+z\:=\:-1\:\text{ is }L.$
If $L$ meets the $xy$-plane at point $A$ and the $z$-axis at point $B,$
determine the length of line segment $AB.$

First, find the equation of the plane.

We have: . $\begin{array}{cccc}2x + y - 3x &=& 3 & [1] \\ x - 2y + z &=& \text{-}1 & [2] \end{array}$

$\begin{array}{ccccc}\text{Multiply [1] by 2:} & 4x + 2y - 6x &=& 6 \\
\text{Add [2]:} & x - 2y + z &=& \text{-}1 \end{array}$

And we have: . $5x - 5z \:=\:5 \quad\Rightarrow\quad x \:=\:z+1$

Substitute into [2]: . $(z+1) - 2y + z \:=\:\text{-}1 \quad\Rightarrow\quad y \:=\:z+1$

We have these equations: . $\begin{Bmatrix}x &=& z+1 \\ y &=& z+1 \\ z &=&z \end{Bmatrix}$

On the right, replace $z$ with a parameter $t\!:\quad \begin{Bmatrix}x &=& t+1 \\ y &=& t+1 \\ z &=& t\end{Bmatrix}$

These are the parametric equations of the line of intersection.

Line $L$ intersects the $xy$-plane at $A$ . . . Then: . $z = 0.$

Then $t = 0 \quad\Rightarrow\quad x = 1,\;y = 1$

. . We have point $A(1,1,0)$

Line $L$ intersected the $z$-axis at $B$ . . . Then: . $x = 0,\:y = 0$

Then: . $t = \text{-1} \quad\Rightarrow\quad z \:=\:\text{-1}$

. . We have point $B(0,0,\text{-}1)$

Therefore, length of $AB \;=\;\sqrt{(0-1)^2 + (0-1)^2 + (-1-0)^2} \;=\;\sqrt{3}$