Let ABCD.A'B'C'D' be a parallelepiped and let S_1,S_2,S_3 denote the areas of the sides ABCD,ABB'A',ADD'A',respectively.Given that the sum of squares of areas of all sides of tetrahedron AB'CD' equals 3,find the smallest possible value of
T = 2(\frac {1}{S_1} + \frac {1}{S_2} + \frac {1}{S_3}) + 3(S_1 + S_2 + S_3)