Let $\displaystyle ABC$ be a triangle,$\displaystyle D,L,K$ is a point on $\displaystyle BC,CA,AB$
Circumcircle of triangle $\displaystyle LDC$ cuts circumcircle of triangle $\displaystyle KBD$ at $\displaystyle E(E \neq D)$
$\displaystyle KD $cuts $\displaystyle EB $at $\displaystyle M$
$\displaystyle LD$ cuts $\displaystyle EC$ at $\displaystyle N$
Suppose that $\displaystyle O$ is center of circumcircle of triangle$\displaystyle EBC$
Prove that $\displaystyle AO \perp MN$