Let $\displaystyle ABC$ be a triangle.Incircle $\displaystyle (I)(I$ is center) touch $\displaystyle BC;CA;AB$ at $\displaystyle D;E;F$,respectively.$\displaystyle AD$ cuts $\displaystyle (I)$ at $\displaystyle L(L \neq D)
$
$\displaystyle DH \perp EF(H \in EF)$
$\displaystyle DI$ cuts $\displaystyle (I)$ at$\displaystyle K(K \neq D)$
$\displaystyle EF $cuts $\displaystyle BC$ at $\displaystyle Q$
Prove that $\displaystyle QL$ is tagent of circumcircle of triangle $\displaystyle HKL$