Hi, I have 3 problems relating to the geometry of a circle. Also, can someone please explain the theorem relating to 'the tangent-chord angle being equal to an angle in the alternate segment'. I don't really understand that (the alternate segment part). Thanks!
1) In the figure, PQ is a tangent to the circle at A and OB is parallel to PQ. Find angle BAQ.
2) In the figure, the inscribed circle of triangle ABC meets the sides BC, CA and AB at P, Q and R respectively. If angle CAB is 50 degrees and angle ABC is 84 degrees, find all the angles of triangle PQR.
3) In the figure, O is the centre of the circle. A and B are two points of the circle such that OAB is an equilaterla triangle. OA is produced to C such that OA = AC. Find angle ABC and is CB tangent to the circle at B, giving a reason.
Thanks for your help.