# Thread: Please help me!

1. ## Please help me!

Let triangle ABC that M is in the plane of this triangle.
A',B',C'are midpoint in (BC),(AC),(AB).
Prove that MA/MA'=MB/MB'=MC/MC'=2.
Thanks in advance!

2. Originally Posted by mpgc_ac
Let triangle ABC that M is in the plane of this triangle.
A',B',C'are midpoint in (BC),(AC),(AB).
Prove that MA/MA'=MB/MB'=MC/MC'=2.
Thanks in advance!
By that alone, it cannot be solved. Specify more where exactly is M.

As posted, I can put M anywhere inside or outside of triangle ABC such that MA/MA' is not equal to 2, for example.

3. Originally Posted by mpgc_ac
Let triangle ABC that M is in the plane of this triangle.
A',B',C'are midpoint in (BC),(AC),(AB).
Prove that MA/MA'=MB/MB'=MC/MC'=2.
Thanks in advance!
Can we assume the M is the centroid, the point of intersection of the
medians AA', BB' and CC'?

RonL

4. Originally Posted by CaptainBlack
Can we assume the M is the centroid, the point of intersection of the
medians AA', BB' and CC'?

RonL
Yes you are right. Because the ratio from the vertex to the centroid to the remaining distance is 2:1