Thank you soooo much for your help!

Can you also check my answers for the following questions?

----

The diagram below shows 3 congruent equilateral triangles. Express each difference as a single vector.

a) $\displaystyle {\overrightarrow {BA} } - {\overrightarrow {BC} } = {\overrightarrow {BA} } + {\overrightarrow {CB} } = {\overrightarrow {CA} }$

b) $\displaystyle {\overrightarrow {BA} } - {\overrightarrow {BD} } = {\overrightarrow {BA} } + {\overrightarrow {DB} } = {\overrightarrow {DA} } $

c) $\displaystyle {\overrightarrow {CE} } - {\overrightarrow {AE} } = {\overrightarrow {CE} } + {\overrightarrow {EA} } = {\overrightarrow {CA} }$

d) $\displaystyle {\overrightarrow {AE} } - {\overrightarrow {ED} } = {\overrightarrow {AE} } + {\overrightarrow {DE} } = {\overrightarrow {BE} }$

AND. . . . . . .

The diagram below contains two squares. Express each difference as a single vector.

a) $\displaystyle {\overrightarrow {SQ} } - {\overrightarrow {ST} } = {\overrightarrow {SQ} } + {\overrightarrow {TS} } = {\overrightarrow {SP} } $

b) $\displaystyle {\overrightarrow {QT} } - {\overrightarrow {QP} } = {\overrightarrow {QT} } + {\overrightarrow {PQ} } = {\overrightarrow {PT} } $

c) $\displaystyle {\overrightarrow {PR} } - {\overrightarrow {QS} } = {\overrightarrow {PR} } + {\overrightarrow {SQ} } = {\overrightarrow {UQ} } $

d) $\displaystyle {\overrightarrow {PT} } - {\overrightarrow {TS} } = {\overrightarrow {PT} } + {\overrightarrow {ST} } = {\overrightarrow {PU} } $