# help proving midpoints of quadrilaterals

• Feb 18th 2013, 03:09 PM
djo4567
[solved] help proving midpoints of quadrilaterals
• Feb 18th 2013, 03:23 PM
johng
Re: help proving midpoints of quadrilaterals
For both questions, look for congruent triangles. Once you've identified the congruent triangles, study the angles.
• Feb 18th 2013, 05:06 PM
djo4567
Re: help proving midpoints of quadrilaterals
.
• Feb 18th 2013, 05:44 PM
Soroban
Re: help proving midpoints of quadrilaterals
Hello, djo4567!

I'll do the first one.

Quote:

Connect the midpoint of the sides of a rhombus.
Prove that the midpoints form a rectangle.

$\displaystyle \text{We have rhombus }ABCD,\,\text{ and midpoints }E, F, G, H.$

Code:

                      E             A o * * * o * * * o B             *    *  *    *             *  *      *  *           * *          * *         H o              o F         * *          * *         *  *      *  *       *    *  *    *     D o * * * o * * * o C               G
$\displaystyle \text{Draw diagonal }BD.$

$\displaystyle \text{In }\Delta ABD,\,E\text{ and }H\text{ are midoints of }AB\text{ and }AD.}$
$\displaystyle \text{Hence: }\,EH = \tfrac{1}{2}BD\text{ and }EH \parallel BD.$
$\displaystyle \text{(Theorem: the segment joining the midpoints of two sides of a triangle}$
. . $\displaystyle \text{is parallel to and one-half the length of the third side.)}$

$\displaystyle \text{In }\Delta CBD,\,F\text{ and }G\text{ are midpoints of }CB\text{ and }CD.$
$\displaystyle \text{Hence: }\,FG = \tfrac{1}{2}BD\text{ and }FG \parallel BD.$

$\displaystyle \text{Hence, }EFGH\text{ is a parallelogram.}$
$\displaystyle \text{(Theorem: if two sides of a quadrilateral are equal and parallel,}$
. . $\displaystyle \text{the quadrilateral is a parallelogram.)}$

$\displaystyle \text{Draw diagonal }AC.$
$\displaystyle \text{Then: }\,AC \perp BD.$
$\displaystyle \text{(Diagonals of a rhombus are perpendicular..)}$

$\displaystyle \text{In }\Delta ABC,\,EF = \tfrac{1}{2} AC\text{ and }EF \parallel AC.$

$\displaystyle \text{Since }EH \parallel BD,\,EF \perp EH.$

$\displaystyle \text{Therefore, }EFGH\text{ is a rectangle.}$
• Feb 18th 2013, 07:09 PM
djo4567
Re: help proving midpoints of quadrilaterals
Quote:

Originally Posted by Soroban
Hello, djo4567!

I'll do the first one.

$\displaystyle \text{We have rhombus }ABCD,\,\text{ and midpoints }E, F, G, H.$

Code:

                      E             A o * * * o * * * o B             *    *  *    *             *  *      *  *           * *          * *         H o              o F         * *          * *         *  *      *  *       *    *  *    *     D o * * * o * * * o C               G
$\displaystyle \text{Draw diagonal }BD.$

$\displaystyle \text{In }\Delta ABD,\,E\text{ and }H\text{ are midoints of }AB\text{ and }AD.}$
$\displaystyle \text{Hence: }\,EH = \tfrac{1}{2}BD\text{ and }EH \parallel BD.$
$\displaystyle \text{(Theorem: the segment joining the midpoints of two sides of a triangle}$
. . $\displaystyle \text{is parallel to and one-half the length of the third side.)}$

$\displaystyle \text{In }\Delta CBD,\,F\text{ and }G\text{ are midpoints of }CB\text{ and }CD.$
$\displaystyle \text{Hence: }\,FG = \tfrac{1}{2}BD\text{ and }FG \parallel BD.$

$\displaystyle \text{Hence, }EFGH\text{ is a parallelogram.}$
$\displaystyle \text{(Theorem: if two sides of a quadrilateral are equal and parallel,}$
. . $\displaystyle \text{the quadrilateral is a parallelogram.)}$

$\displaystyle \text{Draw diagonal }AC.$
$\displaystyle \text{Then: }\,AC \perp BD.$
$\displaystyle \text{(Diagonals of a rhombus are perpendicular..)}$

$\displaystyle \text{In }\Delta ABC,\,EF = \tfrac{1}{2} AC\text{ and }EF \parallel AC.$

$\displaystyle \text{Since }EH \parallel BD,\,EF \perp EH.$

$\displaystyle \text{Therefore, }EFGH\text{ is a rectangle.}$

THANK YOU!!!! That helped soo much.
• Feb 19th 2013, 07:48 AM
johng
Re: help proving midpoints of quadrilaterals
Here's a second proof obtained just by considering angles; I think it's more elementary than the above solution:

Attachment 27144