A cone is attached to a hemisphere of radius 4 cm. If the total height of the object is 10 cm, find its volume.
Let's calculate the volume of the cone and the volume of the hemisphere seperatly and then add them. I will be accurate to 2 points after the decimal point.
Hemisphere: V = (2/3)*pi*r^3 = 128*pi/3 = 134.04
If the height of the entire object is 10, and the radius of the hemisphere is 4, then the height of the cone is 10 - 4 = 6.
Cone: V = (1/3)*pi*r^2*h = 32*pi = 100.53
Vcone + Vhemisphere = 134.04 + 100.53 = 234.57
Hello, Farisco!
A cone is attached to a hemisphere of radius 4 cm.
If the total height of the object is 10 cm, find its volume.
We have a hemisphere with radius 4.Code:- * * * : * : * : * : * : * :4 * : : : * - - - - * - - - - * : \ 4 : 4 / 10 \ : / : \ : / : \ :6 / : \ : / : \ : / : \ : / : \ : / : \:/ - *
We have cone with radius 4 and height 6.
You should be able to find the total volume
. . without a calculator and without rounded-off decimals.
A sphere has volume: .$\displaystyle V \:=\:\tfrac{4}{3}\pi r^3$, where $\displaystyle r$ is the radius.
A half-sphere with radius 4 has volume: .$\displaystyle V \:=\:\tfrac{1}{2} \times \tfrac{4}{3}\pi(4^3) \:=\:\frac{128\pi}{3} $
A circular cone has volume: .$\displaystyle V \:=\:\tfrac{\pi}{3}r^2h\;\;(r = \text{radius, }\:h = \text{height})$
A cone with $\displaystyle r = 4,\,h=6$ has volume: .$\displaystyle V \;=\;\tfrac{\pi}{3}(4^2)(6) \:=\:32\pi$
The total volume is: .$\displaystyle \frac{128\pi}{3} + 32\pi \;=\;\boxed{\frac{224\pi}{3}\text{ cm}^3}$
If you want a decimal, now is the time to crank it out:
. . . . $\displaystyle \boxed{2}\,\boxed{2}\,\boxed{4}\;\;\boxed{\times} \;\; \boxed{\pi}\;\;\boxed{\div}\;\;\boxed{3}\;\;\boxed {=} $
and we get: .$\displaystyle \boxed{234.5722515} $