Vertices/Foci of an ellipse
Should be an easy one: Find foci and vertices
4x2+9y2=1
answers are
Vertices=$\displaystyle ({{\frac{-1}{2}},0})({{\frac{1}{2}},0})$
Foci=$\displaystyle ({\frac{-\sqrt{5}}{6}},0)({\frac{\sqrt{5}}{6}},0)$
I cant seem to be able to turn the equation into proper ellipse form to derive numbers from.
Re: Vertices/Foci of an ellipse
Hello, Greymalkin!
Quote:
$\displaystyle \text{Find foci and vertices: }\:4x^2 +9y^2 \:=\:1$
$\displaystyle \text{Answers are:}$
. . $\displaystyle \text{Vertices: }\left(\pm\tfrac{1}{2},\,0\right) $
. . . $\displaystyle \text{Foci: }\left(\pm\tfrac{\sqrt{5}}{6},\,0\right)$
$\displaystyle \text{I can't seem to be able to turn the equation into proper ellipse form to derive numbers.}$
The general form is: .$\displaystyle \frac{x^2}{a^2} + \frac{y^2}{b^2} \:=\:1$
Note the coefficient of $\displaystyle x^2$ should be 1.
We have: .$\displaystyle 4x^2 + 9y^2 \:=\:1$
Multiply the first term by $\displaystyle \frac{\frac{1}{4}}{\frac{1}{4}}$, the second by $\displaystyle \frac{\frac{1}{9}}{\frac{1}{9}} $
. . $\displaystyle \frac{\frac{1}{4}}{\frac{1}{4}}\left(\frac{4x^2}{1 }\right) + \frac{\frac{1}{9}}{\frac{1}{9}}\left(\frac{9y^2}{1 }\right) \:=\:1 \quad\Rightarrow\quad \frac{x^2}{\frac{1}{4}} + \frac{y^2}{\frac{1}{9}} \:=\:1$
Hence: .$\displaystyle \begin{Bmatrix}a^2 \:=\:\frac{1}{4} & \Rightarrow & a \:=\:\pm\frac{1}{2} \\ \\[-3mm] b^2 \:=\:\frac{1}{9} & \Rightarrow & b \:=\:\pm\frac{1}{3} \end{Bmatrix}$
And: .$\displaystyle c^2 \:=\:a^2-b^2 \:=\:\tfrac{1}{4} - \tfrac{1}{9} \:=\:\tfrac{5}{36} \quad\Rightarrow\quad c \:=\:\pm\tfrac{\sqrt{5}}{6}$