If you know that AC=3,AB=4,XY=1,then what is XW=?

WXYZ and ABCD are rectangulars

http://store3.up-00.com/June12/zd594451.jpg

Printable View

- Jun 8th 2012, 02:28 PMMhmh96Finding the length of line
If you know that AC=3,AB=4,XY=1,then what is XW=?

WXYZ and ABCD are rectangulars

http://store3.up-00.com/June12/zd594451.jpg - Jun 8th 2012, 09:39 PMSorobanRe: Finding the length of line
Hello, Mhmh96!

Quote:

$\displaystyle \text{Given: }\:AC=3,\;AB=4,\;XY=1.$

. . . . . .$\displaystyle W\!XYZ\text{ and }ABDC\text{ are rectangles.}$

$\displaystyle \text{Find the length of }XW.$

http://store3.up-00.com/June12/zd594451.jpg

Draw diagonal $\displaystyle BC.$

Triangle $\displaystyle ABC$ is a 3-4-5 right triangle.

We find that $\displaystyle XW$ and $\displaystyle Y\!Z$ are parallel to $\displaystyle BC.$

And**all**the right triangles are similar.

$\displaystyle \text{In right triangle }X\!BY\!:\:XY = 1,\;B\!X = \tfrac{3}{5},\;BY = \tfrac{4}{5}$

Can you finish the problem?

- Jun 8th 2012, 09:45 PMMhmh96Re: Finding the length of line
Actually no Soroban,can you explain more .

- Jun 8th 2012, 09:50 PMProve ItRe: Finding the length of line
- Jun 8th 2012, 10:08 PMProve ItRe: Finding the length of line
I'm going to call length $\displaystyle \displaystyle \begin{align*} CZ = XB = x \end{align*}$, length $\displaystyle \displaystyle \begin{align*} WC = BY = y \end{align*}$ and $\displaystyle \displaystyle \begin{align*} WX = YZ = z \end{align*}$.

From the smallest triangles, we can see that $\displaystyle \displaystyle \begin{align*} x^2 + y^2 = 1 \end{align*}$ by Pythagoras.

We can also see from the larger triangles that

$\displaystyle \displaystyle \begin{align*} (4 - x)^2 + (3 - y)^2 &= z^2 \\ 16 - 8x + x^2 + 9 - 6y + y^2 &= z^2 \\ 16 - 8x + 9 - 6y + 1 &= z^2 \textrm{ since }x^2 + y^2 = 1 \\ 26 - 8x - 6y &= z^2 \\ z &= \sqrt{26 - 8x - 6y} \end{align*}$

Now note that the area of the largest rectangle is $\displaystyle \displaystyle \begin{align*} 12 \end{align*}$. If we evaluate the area of each smaller piece, we find

$\displaystyle \displaystyle \begin{align*} (3 - y)(4 -x ) + \frac{1}{2}xy + (3 - y)(4 - x) + \frac{1}{2}xy + \sqrt{26 - 8x - 6y} &= 12 \\ 2\left(12 - 3x - 4y + xy\right) + xy + \sqrt{26 - 8x - 6y} &= 12 \\ 24 - 6x - 8y + 2xy + xy + \sqrt{26 - 8x - 6y} &= 12 \\ 24 - 6x - 8y + 3xy + \sqrt{26 - 8x - 6y} &= 12 \end{align*}$

Substituting $\displaystyle \displaystyle \begin{align*} x = \sqrt{1 - y^2} \end{align*}$, (since we know $\displaystyle \displaystyle \begin{align*} x^2 + y^2 = 1 \end{align*}$) will enable solving for $\displaystyle \displaystyle \begin{align*} y \end{align*}$, which will enable solving for $\displaystyle \displaystyle \begin{align*} x \end{align*}$, and finally solving for $\displaystyle \displaystyle \begin{align*} z \end{align*}$.

See how you go. - Jun 10th 2012, 03:40 AMbjhopperRe: Finding the length of line
Following Soroban's hint I calculated

WX= 4.25= ( 17/5) / cos 36.87

ZY = 3.66 = (11/5 /sin 36.87

WXYZ is not a rectangle but a trapezoid - Jun 10th 2012, 05:42 AMBobPRe: Finding the length of line
The rectangle has to be in a particular position, the angle AXW being approximately 31.7501 degrees.

WX turns out to be approximately 4.08512.