# Proof involving hyberbola

Show 40 post(s) from this thread on one page
Page 1 of 2 12 Last
• Mar 31st 2012, 08:41 AM
Don
Proof involving hyberbola
Prove that the line http://latex.codecogs.com/gif.latex?...Calpha%20=%20p touches the hyperbola http://latex.codecogs.com/gif.latex?.../b%5E2%20=%201 if http://latex.codecogs.com/gif.latex?...5E2%20%5Calpha.

How do I start?

Edit: Sorry for the error in the question.
• Mar 31st 2012, 09:16 AM
biffboy
Re: Proof involving hyberbola
Check the wording of the question. What you've written isn't a line.
• Mar 31st 2012, 09:22 AM
Don
Re: Proof involving hyberbola
Corrected the question.
• Mar 31st 2012, 10:03 AM
biffboy
Re: Proof involving hyberbola
Again have you copied the question correctly. That is an ellipse not a hyperbola.
• Mar 31st 2012, 07:18 PM
Don
Re: Proof involving hyberbola
biffboy, thanks for your patience. Error again and corrected again.
• Mar 31st 2012, 11:49 PM
biffboy
Re: Proof involving hyberbola
Make x the subject of the line equation and substitute this into the hyperbola equation. Rearrange this as a quadratic in y. For the line to be a tangent we require this quadratic to have repeated roots. Applying this condition should produce the result stated.
• Apr 1st 2012, 08:01 AM
Don
Re: Proof involving hyberbola
So, do I substitute the value of y in the line equation with the value of y with respect to x?

In that case, the equation becomes,

Attachment 23490

So the line equation will become

Attachment 23491

I tried to simplify the equation and it is becoming messy. Am I doing things right?

(Sorry for the small image, laTEX is pain and I do not know how to put the special characters here. Tried to use an online latex editor but there seems to be some problem)
• Apr 1st 2012, 08:14 AM
biffboy
Re: Proof involving hyberbola
Replace y in the hyperbola equation with (p-xcosa)/sina
• Apr 1st 2012, 09:23 AM
Don
Re: Proof involving hyberbola
$(p - ysin\alpha/cos\alpha )^2/a^2 - y^2/b^2 = 1$

$(p^2 + y^2sin^2\alpha - 2pysin\alpha)/a^2 cos^2 \alpha - y^2/b^2 = 1$

$(p^2 + y^2sin^2\alpha - 2pysin\alpha)/a^2 cos^2 \alpha = 1 + y^2/b^2$

$(p^2 + y^2sin^2\alpha - 2pysin\alpha)b^2 = (b^2 + y^2)(a^2 cos^2 \alpha)$

This doesn't seem to be leading anywhere. Is this what I am supposed to do?
• Apr 1st 2012, 09:49 PM
biffboy
Re: Proof involving hyberbola
Rearrange your last line to get a quadratic in y. You then want this quadratic to have a repeated root.
• Apr 2nd 2012, 12:50 AM
biffboy
Re: Proof involving hyberbola
What you have substituted for x should be p/cosa-(sina/cosa)y
• Apr 3rd 2012, 06:11 AM
Don
Re: Proof involving hyberbola
So I got the equation

$\left (p - y sin\alpha \right )^2 = (a^2+b^2)(a^2cos^2\alpha )/b^2$

Is this correct?
• Apr 3rd 2012, 06:55 AM
biffboy
Re: Proof involving hyberbola
I can't see what's happened there. Looking back your last line of post 9 was correct so look at my post 10 again
• Apr 3rd 2012, 07:57 AM
biffboy
Re: Proof involving hyberbola
If you want one last fresh start try this. I'll write A instead of alpha. Line can be written y=-(cosA/sinA)x+p/sinA
This is y=mx+c with m=-cosA/sinA and c=p/sinA
Substitute y=mx+c into the hyperbola. So x^2/a^2-(mx+c)^2/b^2=1
Multiply throughout by a^2b^2 and remove the brackets and then rearrange as a quadratic in x
Apply the condition for this to have repeated roots
After some symplifying this gives b^2+c^2-(a^2m^2)=0
Put back in what m and c stood for to get the required result
• Apr 4th 2012, 08:46 AM
Don
Re: Proof involving hyberbola
OK, here's my attempt:

$x^2/a^2 - (mx + c)^2/b^2 = 1$

Multiplying both the terms by a2b2,

$x^2b^2 - (m^2x^2 + c^2 + 2mxc)a^2 = 1$

Rearranging, I get

$x^2(b^2 - m^2a^2) + x(-2mca^2) + (-a^2c^2-1) = 0$

This is of the form ax2+bx+c=0

What do I do now? I don't know how to make it have repeated roots.

I hope I am on the right track.
Show 40 post(s) from this thread on one page
Page 1 of 2 12 Last