Hi All,

A similar question to the ladder one i posted earlier. Now that i have an idea from what i was shown earlier, i've tried to attempt it.

The Question says: A 20cm nail fits inside a cylindrical can. Find the maximum radius of 3 balls that will fit exactly inside the can?

I have drawn the diag to the best of my ability. At first i thought the nail stood upright in the can.

So i the length of the can is 20cm and to fit 3 balls in =

20/6 = radius = 3.33cm (wrong ans)

But, using the help i got from the ladder question, I then thought the nail is probably lying diagonally (AB) and then i tried splitting the diag to make right angel triangles.

*h = Radius

(AO)^2 + h^2 = 10^2 > (AO)^2 + h^2 = 100

(2AO)^2 + (2h)^2 = 20^2 > (4AO)^2 + (4h^2) = 400

Subtracting the two doesn't work..

I tried making (AO^2) the subject = AO^2 = 100 - h^2

and sub it into the second equation...still nothing :-(