Page 2 of 3 FirstFirst 123 LastLast
Results 16 to 30 of 35

Math Help - Locus Help

  1. #16
    MHF Contributor

    Joined
    Aug 2006
    Posts
    18,711
    Thanks
    1640
    Awards
    1
    Here is another problem.
    Write the equation of the parabola with focus (-1,1) and directrix y=2x-1.
    Follow Math Help Forum on Facebook and Google+

  2. #17
    Eater of Worlds
    galactus's Avatar
    Joined
    Jul 2006
    From
    Chaneysville, PA
    Posts
    3,001
    Thanks
    1
    Quote Originally Posted by Plato View Post
    Here is another problem.
    Write the equation of the parabola with focus (-1,1) and directrix y=2x-1.
    Is it OK for anyone to chime in?.

    This is a different parabola problem. Cool.

    F(-1,1) and directrix is the line y=2x-1.

    Standard form of line is y-2x+1=0

    We can use this in the right side of the following equation, which is the distance form a point to a line formula.

    \sqrt{(x+1)^{2}+(y-1)^{2}}=\frac{|y-2x+1|}{\sqrt{1^{2}+(-2)^{2}}}

    Square both sides and expand:

    x^{2}+2x+y^{2}-2y+2=\frac{4}{5}x^{2}-\frac{4}{5}xy-\frac{4}{5}x+\frac{1}{5}y^{2}+\frac{2}{5}y+\frac{1  }{5}

    \frac{1}{5}x^{2}+(\frac{4}{5}y+\frac{14}{5})x+\fra  c{4}{5}y^{2}-\frac{12}{5}y+\frac{9}{5}=0

    x^{2}+(4y+14)x+4y^{2}-12y+9=0

    And that is the equation of said parabola. Assuming I didn't make a mistake.
    Follow Math Help Forum on Facebook and Google+

  3. #18
    Forum Admin topsquark's Avatar
    Joined
    Jan 2006
    From
    Wellsville, NY
    Posts
    9,965
    Thanks
    350
    Awards
    1
    Quote Originally Posted by galactus View Post
    Is it OK for anyone to chime in?.

    This is a different parabola problem. Cool.

    F(-1,1) and directrix is the line y=2x-1.

    Standard form of line is y-2x+1=0

    We can use this in the right side of the following equation, which is the distance form a point to a line formula.

    \sqrt{(x+1)^{2}+(y-1)^{2}}=\frac{|y-2x+1|}{\sqrt{1^{2}+(-2)^{2}}}

    Square both sides and expand:

    x^{2}+2x+y^{2}-2y+2=\frac{4}{5}x^{2}-\frac{4}{5}xy-\frac{4}{5}x+\frac{1}{5}y^{2}+\frac{2}{5}y+\frac{1  }{5}

    \frac{1}{5}x^{2}+(\frac{4}{5}y+\frac{14}{5})x+\fra  c{4}{5}y^{2}-\frac{12}{5}y+\frac{9}{5}=0

    And that is the equation of said parabola. Assuming I didn't make a mistake.
    Looks good to me!

    -Dan
    Attached Thumbnails Attached Thumbnails Locus Help-parabola.jpg  
    Follow Math Help Forum on Facebook and Google+

  4. #19
    Eater of Worlds
    galactus's Avatar
    Joined
    Jul 2006
    From
    Chaneysville, PA
    Posts
    3,001
    Thanks
    1
    WHEW!!. Good. I'm glad that wasn't for nothing.
    Follow Math Help Forum on Facebook and Google+

  5. #20
    Forum Admin topsquark's Avatar
    Joined
    Jan 2006
    From
    Wellsville, NY
    Posts
    9,965
    Thanks
    350
    Awards
    1
    For the hyperbola (okay, I had to look this one up ):

    "An" hyperbola is the locus of points where the difference in the distance to two fixed points (foci) is constant.

    Going back to the ellipse, I don't know what kind of figure is given if you have, say, three or more foci. Is this even defined?

    -Dan
    Follow Math Help Forum on Facebook and Google+

  6. #21
    Bar0n janvdl's Avatar
    Joined
    Apr 2007
    From
    Meh
    Posts
    1,630
    Thanks
    6
    Quote Originally Posted by Plato View Post
    Here is another problem.
    Write the equation of the parabola with focus (-1,1) and directrix y=2x-1.
    Cool, let me try.

    So using Topsquark's method:

     d_1 = \sqrt{x^2 + y^2}

     d_2 = y - (2x - 1)

     \sqrt{x^2 + y^2} = y - 2x + 1

     x^2 + y^2 = (y - 2x + 1)^2

     x^2 + y^2 = y^2 - 4xy - 4x + 2y + 4x^2 + 1

     y^2 - y^2 = 3x^2 - 4xy + 2y - 4x + 1

     -2y = 3x^2 - 4xy - 4x + 1

     -2y + 4xy = 3x^2 - 4x + 1

     y(-2 + 4x) = 3x^2 - 4x + 1

     y = \frac{3x^2}{(-2 + 4x)} - \frac{4x}{(-2 + 4x)} + \frac{1}{(-2 + 4x)}

    Is this right?
    Last edited by janvdl; July 27th 2007 at 11:18 PM. Reason: Discovered a mistake :-D
    Follow Math Help Forum on Facebook and Google+

  7. #22
    Bar0n janvdl's Avatar
    Joined
    Apr 2007
    From
    Meh
    Posts
    1,630
    Thanks
    6
    Thanks a lot for all those definitions Topsquark, it really helps.
    Follow Math Help Forum on Facebook and Google+

  8. #23
    Forum Admin topsquark's Avatar
    Joined
    Jan 2006
    From
    Wellsville, NY
    Posts
    9,965
    Thanks
    350
    Awards
    1
    Quote Originally Posted by janvdl View Post
    Cool, let me try.

    So using Topsquark's method:

     d_1 = \sqrt{x^2 + y^2}

     d_2 = y - (2x - 1)

     \sqrt{x^2 + y^2} = y - 2x + 1

     x^2 + y^2 = (y - 2x + 1)^2

     x^2 + y^2 = y^2 - 4xy - 4x + 2y + 4x^2 + 1

     y^2 - y^2 = 3x^2 - 4xy + 2y - 4x + 1

     -2y = 3x^2 - 4xy - 4x + 1

     -2y + 4xy = 3x^2 - 4x + 1

     y(-2 + 4x) = 3x^2 - 4x + 1

     y = \frac{3x^2}{(-2 + 4x)} - \frac{4x}{(-2 + 4x)} + \frac{1}{(-2 + 4x)}

    Is this right?
    I'm afraid not. galactus got it right in all the details. Plato's problem was (fortunately) not typical!

    The method I posted works only for a parabola that opens either upward or downward. Plato's parabola opens off on a diagonal, so this is more complicated.

    Try this for a more general problem (again using an upward or downward opening parabola):
    Given a focus F(a, b) and a directrix y = c the distance from the point (x, y) to F is:
    d_1 = \sqrt{(x - a)^2 + (y - b)^2}

    and the vertical distance from (x, y) to the line y = c is
    d_2 = y - c.

    You finish it from here.

    -Dan
    Follow Math Help Forum on Facebook and Google+

  9. #24
    Bar0n janvdl's Avatar
    Joined
    Apr 2007
    From
    Meh
    Posts
    1,630
    Thanks
    6
    Quote Originally Posted by topsquark View Post
    Plato's problem was (fortunately) not typical!
    I'm only still in school, go easy on me!
    Follow Math Help Forum on Facebook and Google+

  10. #25
    Forum Admin topsquark's Avatar
    Joined
    Jan 2006
    From
    Wellsville, NY
    Posts
    9,965
    Thanks
    350
    Awards
    1
    Quote Originally Posted by janvdl View Post
    I'm only still in school, go easy on me!
    Aren't we all?

    -Dan
    Follow Math Help Forum on Facebook and Google+

  11. #26
    Bar0n janvdl's Avatar
    Joined
    Apr 2007
    From
    Meh
    Posts
    1,630
    Thanks
    6
    Quote Originally Posted by topsquark View Post
    Aren't we all?

    -Dan
    The only problem is that most of you guys are at university or already have math degrees. I can't wait for next year so that i can start learning REAL maths.
    Follow Math Help Forum on Facebook and Google+

  12. #27
    Eater of Worlds
    galactus's Avatar
    Joined
    Jul 2006
    From
    Chaneysville, PA
    Posts
    3,001
    Thanks
    1
    It's obvious you love math, so you're 'shining times' are ahead of you when it comes to learning it. It's amazing how few people enjoy it and most look at it as a disease they have to keep from catching. I can see it now:

    Janvdl, PhD.; Fields Medalist; solver of the Riemann Zeta problem.

    Actually, I didn't get an interest in math until I started college. I initially majored in Comp Sci, but changed to math once I took calculus.

    I had used trig and so forth while surveying, but my interest peaked in school.

    Have fun. Oh, BTW, did you follow that unorthodox parabola solution?.
    Follow Math Help Forum on Facebook and Google+

  13. #28
    Bar0n janvdl's Avatar
    Joined
    Apr 2007
    From
    Meh
    Posts
    1,630
    Thanks
    6
    Quote Originally Posted by galactus View Post

    Janvdl, PhD.; Fields Medalist; solver of the Riemann Zeta problem.
    I'd give you 10 thanks for that one if i could
    No, i really do love maths and i will be studying B.Com Actuarial Science next year, and after that i will continue studying B.Sc Mathematics and Applied Mathematics until i do reach my PhD in it.


    Quote Originally Posted by galactus
    I had used trig and so forth while surveying, but my interest peaked in school.
    To be honest, school maths bores me. Except for locii, which i still need to get the hang of. But i love calculus, its by far the maths i've had the most fun with. I like the whole concept of number theory as well, but i struggle to understand it, primarily because no-one ever taught me stuff like it.

    Quote Originally Posted by galactus
    ...did you follow that unorthodox parabola solution?
    I lost you on the second step i think Where you got an absolute value as a numerator.

    And to be honest, i still don't really know what a directrix is. It has something to do with a distance moving away from the parabola or something, but i don't get it.
    Follow Math Help Forum on Facebook and Google+

  14. #29
    Eater of Worlds
    galactus's Avatar
    Joined
    Jul 2006
    From
    Chaneysville, PA
    Posts
    3,001
    Thanks
    1
    The right side of the equation was the formula for the distance form a point to a line. You can't have a negative distance, so it's an absolute value.

    A parabola is defined as a set of points equidistant from a fixed point(focus) and a fixed line(directrix).

    Let me show you a graph. Let's just use y=\frac{-1}{6}x^{2}.

    The distance from the directrix to any point on the parabola is the same as the distance from the focus to that point. That's what a parabola is.

    The distance from the focus to the vertex is the same as the distance form the vertex to the directrix.

    The distance, normally denoted by 'p', is the distance from the focus to the vertex. p=\frac{1}{4a}

    In this case, a=-1/6, so \frac{1}{4(-1/6)}=-3/2. See?. Does that help a little?.
    Last edited by galactus; November 24th 2008 at 05:39 AM.
    Follow Math Help Forum on Facebook and Google+

  15. #30
    Bar0n janvdl's Avatar
    Joined
    Apr 2007
    From
    Meh
    Posts
    1,630
    Thanks
    6
    Quote Originally Posted by galactus View Post
    The distance from the directrix to any point on the parabola is the same as the distance from the focus to that point. That's what a parabola is.
    Am i correct in assuming that the focus and the directrix could be moved like we wish? As long as their distances to a certain point on the parabola remain equal?
    Follow Math Help Forum on Facebook and Google+

Page 2 of 3 FirstFirst 123 LastLast

Similar Math Help Forum Discussions

  1. Locus
    Posted in the Pre-Calculus Forum
    Replies: 1
    Last Post: April 5th 2010, 10:54 PM
  2. Locus
    Posted in the Geometry Forum
    Replies: 1
    Last Post: March 20th 2010, 07:13 AM
  3. Locus
    Posted in the Geometry Forum
    Replies: 4
    Last Post: September 30th 2008, 02:37 PM
  4. locus help
    Posted in the Pre-Calculus Forum
    Replies: 1
    Last Post: April 24th 2008, 07:43 PM
  5. ODE and locus
    Posted in the Calculus Forum
    Replies: 0
    Last Post: September 18th 2007, 10:37 AM

Search Tags


/mathhelpforum @mathhelpforum