1. ## Givens. Statements, proofs

Given: RA bisects ∠TRI; ∠TAR≅∠IAR
Prove: ∠T≅∠I
Statement:
1. RA bisects ∠TRI
2. ∠TRA≅∠IRA
3. ∠TAR≅∠IAR
4. RA≅RA
5.ΔTAR≅ΔIAR
6. ∠T≅∠I

A)1. Given; 2. Definition of midpoint of a segment; 3. Given; 4. Symmetric property; 5. SSS postulate; 6. CPCTC

B)1. Given; 2. Definition of an angle bisector; 3. Given; 4. Commutative property; 5. AAA postulate; 6. CPCTC

C)1. Given; 2. Definition of an angle bisector; 3. Given; 4. Reflexive property; 5. ASA postulate; 6. CPCTC

Given: RA bisects ∠TRI; ∠TAR≅∠IAR
Prove: ∠T≅∠I
Statement:
1. RA bisects ∠TRI ===== Given
2. ∠TRA≅∠IRA ======= Definition of an angle bisector
3. ∠TAR≅∠IAR ======= Given
4. RA≅RA =========== Reflexive property
5.ΔTAR≅ΔIAR ======== ASA postulate
6. ∠T≅∠I ========== CPCTC

A)1. Given; 2. Definition of midpoint of a segment; 3. Given; 4. Symmetric property; 5. SSS postulate; 6. CPCTC

B)1. Given; 2. Definition of an angle bisector; 3. Given; 4. Commutative property; 5. AAA postulate; 6. CPCTC

C)1. Given; 2. Definition of an angle bisector; 3. Given; 4. Reflexive property; 5. ASA postulate; 6. CPCTC
There you go!

...

A)1. Given; 2. Definition of midpoint of a segment; 3. Given; 4. Symmetric property; 5. SSS postulate; 6. CPCTC

B)1. Given; 2. Definition of an angle bisector; 3. Given; 4. Commutative property; 5. AAA postulate; 6. CPCTC

C)1. Given; 2. Definition of an angle bisector; 3. Given; 4. Reflexive property; 5. ASA postulate; 6. CPCTC