1. ## triangle conclusion

the triangle KLM, KL = 14 and LM = 32. Which is a true conclusion?

KM - KL > 2(32)
KL - KM > 32
LM + KL < 32
KM - LM < 14

i think this is the answer?

2. The triangle inequality says that if a,b,c are sides of a triangle then:
a+b>c
Hence,
a>b-c

"Thus the difference of two sides is always less than the third side"

Use that to answer thy question

3. Hello, sanee66!

In the triangle $\displaystyle KLM$: .$\displaystyle KL = 14$ and $\displaystyle LM = 32$.
Which is a true conclusion?

$\displaystyle (a)\;KM - KL \;>\; 2(32)$
$\displaystyle (b)\;KL - KM \;> \;32$
$\displaystyle (c)\;LM + KL \;< \;32$
$\displaystyle (d)\;KM - LM \;< \;14\;\;\;\Leftarrow$ I think this is the answer .Yes!
Code:
            L
*
*   *
14 *       *   32
*           *
*               *
*                   *
K *   *   *   *   *   *   * M
Because of the Triangle Inequality: .$\displaystyle KM \:<\:46$

Let's check each of the given statements . . .

$\displaystyle (a)\;KM - KL \:>\:2(32)$
This says: .$\displaystyle KM \:> \:KL + 64 \:=\:14 + 64\quad\Rightarrow\quad KM \:>\:78$ . . . not true

$\displaystyle (b)\;KL - KM \:>\:32$
This says: .$\displaystyle KM \:<\:KL - 32 \:=\:14 - 32\quad\Rightarrow\quad KM < -8$ . . . not true

$\displaystyle (c)\;LM + KL\:<\:32$
This says: .$\displaystyle 32 + 14 \:<\:32\quad\Rightarrow\quad 46 \:<\:32$ . . . not true

$\displaystyle (d)\;KM - LM \:<\:14$
This says: .$\displaystyle KM \:<\:LM + 14 \:=\:32 + 14\quad\Rightarrow\quad KM \:<\:46$ . . . True!

,

,

,

,

,

,

# conclusion on.triangle

Click on a term to search for related topics.