show that the circle $\displaystyle x^2+y^2-2x-2y+4=0$ touches the $\displaystyle y$-axis
I found the radius to be $\displaystyle \sqrt{1^2+1^2-4}=\sqrt{-2}$
is there a problem with this question?
Yes there is!
A circle is...
$\displaystyle \left(x-x_c\right)^2+\left(y-y_c\right)^2=r^2$
$\displaystyle x^2-2x_cx+\left(x_c\right)^2+y^2-2y_cy+\left(y_c\right)^2=r^2$
From your equation.... $\displaystyle \left(x_c,y_c)=(1,1)$
hence $\displaystyle x^2-y^2-2x_cx-2y_cy+2-r^2=0\Rightarrow$
Your constant has to be <2 to have any radius at all for the circle centred at (1,1)