Results 1 to 15 of 15

Math Help - 3-bar equation

  1. #1
    Newbie
    Joined
    Jun 2010
    Posts
    22

    3-bar equation

    Hi
    I ask for a cartesian equation of 3-BARS CURVE...
    Or at least the parametric equation...
    Or at least the polar equation...
    Help me, please
    Follow Math Help Forum on Facebook and Google+

  2. #2
    A Plied Mathematician
    Joined
    Jun 2010
    From
    CT, USA
    Posts
    6,318
    Thanks
    4
    Awards
    2
    What in tarnation is a 3-bars curve? Can you describe in more detail?
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Newbie
    Joined
    Jun 2010
    Posts
    22

    3-bars definition

    Hi Ackbeet!

    We consider an articulate quadrilateral ABCD, with a fixed bar AB, a bar AC (first crank), a bar BD (second crank), and a bar CD (connecting rod).
    The 3-bars curved is the curve traced from a certain point on the connecting rod to rotating of the first crank...
    Follow Math Help Forum on Facebook and Google+

  4. #4
    A Plied Mathematician
    Joined
    Jun 2010
    From
    CT, USA
    Posts
    6,318
    Thanks
    4
    Awards
    2
    Hmm. A picture would be very helpful here. Could you please include one?
    Follow Math Help Forum on Facebook and Google+

  5. #5
    Newbie
    Joined
    Jun 2010
    Posts
    22

    A 3-bar image


    Voila!
    Attached Thumbnails Attached Thumbnails 3-bar equation-quadrilsteral.jpg  
    Follow Math Help Forum on Facebook and Google+

  6. #6
    A Plied Mathematician
    Joined
    Jun 2010
    From
    CT, USA
    Posts
    6,318
    Thanks
    4
    Awards
    2
    Thanks very much for the picture. That's very helpful.

    So, let me get this straight: AC is rotating about A, and BD is rotating about B. You have a variable length connecting rod from C to D. You are interested in obtaining the path that a particular point (call it E) traces out as the two cranks rotate. Is this correct? If so, I have a number of questions for you:

    1. At what rate is AB rotating?
    2. At what rate is BD rotating?
    3. Exactly what point E are you interested in?
    4. I note that you've drawn AC < BD. Are you merely indicating that the two cranks are not necessarily the same length?
    5. Are AB and BD rotating "in phase"?
    Follow Math Help Forum on Facebook and Google+

  7. #7
    MHF Contributor
    Opalg's Avatar
    Joined
    Aug 2007
    From
    Leeds, UK
    Posts
    4,041
    Thanks
    7
    This is a complicated problem. I doubt whether an analytic solution is feasible in general, whether in cartesian, parametric or polar form. There is an interesting web page here with an interactive program for numerical computations.
    Follow Math Help Forum on Facebook and Google+

  8. #8
    A Plied Mathematician
    Joined
    Jun 2010
    From
    CT, USA
    Posts
    6,318
    Thanks
    4
    Awards
    2
    Let's suppose the following: A is the origin, E is the midpoint of CD, AC rotates with constant angular velocity \omega_{1}, and BD rotates with constant angular velocity \omega_{2}. Then point C has the coordinates

    \vec{AC}=AC\langle\cos(\omega_{1}t),\sin(\omega_{1  }t)\rangle and the point D, has the coordinates

    \vec{AD}=\vec{AB}+BD\langle\cos(\omega_{2}t+\delta  ),\sin(\omega_{2}t+\delta)\rangle.

    You can see that the angle \delta I've included in order to allow any phase difference.

    The midpoint E would then have coordinates

    \dfrac{1}{2}(\vec{AC}+\vec{AD}).
    Follow Math Help Forum on Facebook and Google+

  9. #9
    Newbie
    Joined
    Jun 2010
    Posts
    22
    HI Akbeet and Opalg

    I thank you for your interest to my problem…

    I wanted to clarify to Ackbeet that the rotations of two cranks AC and BD are not independent, but that of BD depends from that of AC.
    Just, if I make to rotate crank AC, it moves the connecting rod CD that, in its turn, can make to rotate or oscillate other crank BD.
    Moreover AB, BD, CD, CE are not prefixed, but they are parameters.
    And the curve is only traced for details values of these parameters (the connecting rod must have fixed length).
    Therefore placing AC=a, CD= b, BD=c, CE=d, the curve has an equation (cartesian implicit) of the type
    f (x, y, a, b, c, d) =0.

    And this is the equation that I look for!

    Opelg then points out a generalization of my problem, in which E it is not on the connecting rod, but, loyal with it, to a sure distance, that it increases of an other parameter the curve…
    I think that also in this case the equation, even if complicated, exists,
    Follow Math Help Forum on Facebook and Google+

  10. #10
    A Plied Mathematician
    Joined
    Jun 2010
    From
    CT, USA
    Posts
    6,318
    Thanks
    4
    Awards
    2
    You're also going to need to call the length AB something. I'll call it f. Ok, with your updated information, here are my thoughts:

    Choose the coordinate system so that point A is the origin, and vector \vec{AB}=\langle f,0\rangle. Now the only real differences between what I did in my last post (post # 8) is that point E is not the midpoint of CD, and I'm also thinking that the angle of length c may not be uniform angular motion. Instead, point E is a distance d from C. Therefore, point E is a percentage \tfrac{d}{b} of the distance along CD, right? Therefore, we can write

    \vec{AE}=\dfrac{d}{b}\,\vec{AC}+\left(1-\dfrac{d}{b}\right)\vec{AD}.

    This checks out. If d=b, then this equation reduces to \vec{AE}=\vec{AC}. On the other hand, if d=0, then this equation reduces to \vec{AE}=\vec{AD}.

    It seems to me that there could be some mechanical limitations on this system. Let's assume, as per your drawing, that a < c. What if c+f-a>b? Then this says that if length a is in the positive x direction, its most extreme position, you're not going to be able to get length c to the positive x direction. In order for this mechanical system to work properly, you'd probably need to have a+b=c+f.

    So let's assume the mechanical aspects all work out. We will have the following equations:

    \vec{AC}=a\,\langle\cos(\omega_{1}t),\sin(\omega_{  1}t)\rangle

    \vec{AD}=\langle f,0\rangle+c\,\langle\cos(\theta),\sin(\theta)\ran  gle, and

    \vec{AE}=<br />
\dfrac{d}{b}\,\vec{AC}+\left(1-\dfrac{d}{b}\right)\vec{AD}=<br />
\dfrac{ad}{b}\,\langle\cos(\omega_{1}t),\sin(\omeg  a_{1}t)\rangle+\left(1-\dfrac{d}{b}\right)\left(\langle f,0\rangle+c\,\langle\cos(\theta),\sin(\theta)\ran  gle\right).

    The one piece missing from this set of equations is an expression for \theta. You could think of \theta as one of two solutions the intersection of two circles: one centered at C with radius b, and one centered at B with radius c.

    So these are some ideas. They are essentially equivalent, I think, to the link Opalg provided.
    Follow Math Help Forum on Facebook and Google+

  11. #11
    Newbie
    Joined
    Jun 2010
    Posts
    22

    3-bars generalized

    I thank you very for your information, than me they will be useful for my voice on the sextic curves...
    I wanted to wonder to you now, if you can generalize the problem, like suggested from Opalg, putting the point E not in the straight PQ, ma on triangle CED, like indicated in attached one..
    May you?
    Attached Thumbnails Attached Thumbnails 3-bar equation-quadrilsteralbbis.jpg  
    Follow Math Help Forum on Facebook and Google+

  12. #12
    A Plied Mathematician
    Joined
    Jun 2010
    From
    CT, USA
    Posts
    6,318
    Thanks
    4
    Awards
    2
    I wanted to wonder to you now, if you can generalize the problem, like suggested from Opalg, putting the point E not in the straight PQ, ma on triangle CED, like indicated in attached one..
    Sure you can. See here for an example of that. Your triangle might not be an equilateral triangle, but use whatever angles you have in order to do the rotations required.
    Follow Math Help Forum on Facebook and Google+

  13. #13
    Newbie
    Joined
    Jun 2010
    Posts
    22
    Thanks!
    With your information I have created a 3bars animation (see attachment)

    3barre parametrica LINES.zip
    Follow Math Help Forum on Facebook and Google+

  14. #14
    Newbie
    Joined
    Jun 2010
    Posts
    22
    In the attachment :
    click to OK for a step by step motion...
    press to ENTER for the continuous motion...
    click to CANCEL for exit...
    Follow Math Help Forum on Facebook and Google+

  15. #15
    A Plied Mathematician
    Joined
    Jun 2010
    From
    CT, USA
    Posts
    6,318
    Thanks
    4
    Awards
    2
    Nice animation. I assume the slight inaccuracy in the left circle is insignificant? The tip of the arm does not seem to track with the circle that is already drawn there.
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Replies: 1
    Last Post: April 11th 2011, 02:17 AM
  2. Partial differential equation-wave equation - dimensional analysis
    Posted in the Differential Equations Forum
    Replies: 3
    Last Post: August 28th 2009, 12:39 PM
  3. Replies: 2
    Last Post: May 18th 2009, 01:51 PM
  4. Replies: 2
    Last Post: April 28th 2009, 07:42 AM
  5. Replies: 1
    Last Post: October 23rd 2008, 04:39 AM

Search Tags


/mathhelpforum @mathhelpforum