
easy circle geometry.
ABCD is a cyclic quadrilateral.AB and DC when produced meet at P.again AD and BC when produced meet at R.The circumcircles of triangles BCP and CDR intersect at T. prove that P,T,R are collinear.
i have a soloution,but i want to use the Menelaus theorem or some trignometry to prove it. Is it possible to do so???(Wondering)
please HELP!

I cannot think of the method using Menelaus Theorem , seemingly it is very difficult for us to apply it ...
$\displaystyle \angle RDT = \angle RCT = \angle BPT $
$\displaystyle \angle CDT = \angle CRT = \angle BRT$
Therefore $\displaystyle \angle ADC = \angle RDT + \angle CDT = \angle BPT + \angle BRT $ also $\displaystyle \angle ADC = \angle ABR $ so we have
$\displaystyle \angle BPT + \angle BRT = \angle ABR $
Therefore $\displaystyle P,T,R $ lie on a straight line .

thanks.please posts problems of similar flavour!