Hello, Csou090490!
I can help with part (A) . . .
A spherical cap of radius p and height h is cut from a sphere of radius r.
Show that the volume V of the spherical cap can be expressed as:
A) (1/3)πh²(3r  h)
B) (1/6)π h(3p² + h²) Code:

* * *
*  *
*  :*
*  ::*
 :::
*  :h:*
*++*
*  rh * r

*  *
*  *
*  *
* * *

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ._____
We have a circle: .x² + y² .= .r² . → . y .= .√r²  x²
The shaded region indicated above is revolved about the xaxis.
Its volume is: .V .= .π ∫ (r²  x²) dx . . . from .x = rh .to .x = r
. . V .= .π[r²x  x³/3] . . . x = rh to r
. . . .= .π([r³  r³/3]  [r²(rh)  (rh)³/3])
which simplifies to: .(1/3)πh²(3r  h)