A rectangle is required to have an area of 4 square feet but it's dimensions may vary. If one side has a length x, express the perimeter p of the rectangle as a function of x.
I think the answer is
p = 2(2 + x)
Can someone please verify?
A rectangle is required to have an area of 4 square feet but it's dimensions may vary. If one side has a length x, express the perimeter p of the rectangle as a function of x.
I think the answer is
p = 2(2 + x)
Can someone please verify?
Let the length of the rectangle be $\displaystyle x$ and the width be $\displaystyle y$.
So $\displaystyle A = xy$ and $\displaystyle P = 2x + 2y$.
You're also told $\displaystyle A = 4$, so
$\displaystyle 4 = xy$
$\displaystyle y = \frac{4}{x}$.
Therefore
$\displaystyle P = 2x + 2\left(\frac{4}{x}\right)$
$\displaystyle P = 2x + \frac{8}{x}$.
So no, your answer is not correct.