Results 1 to 3 of 3

Math Help - Area of segments - circle help

  1. #1
    Newbie
    Joined
    Nov 2009
    Posts
    1

    Area of segments - circle help

    I need some help with a puzzle that has been really bugging me. I can't think of any solutions without getting more information, and I have no idea how to get that information.

    You have two identical circles that overlap (like a venn diagram) so that the center point of one circle is on the edge of the other circle. If the overlapping area is exactly 20000 square centimetres, what is the radius of the circles?

    Either answers or suggestions on how to reach an answer would be great. I know the information is vague... Hence the fact I can't do it ^^
    Follow Math Help Forum on Facebook and Google+

  2. #2
    MHF Contributor

    Joined
    Aug 2006
    Posts
    18,956
    Thanks
    1780
    Awards
    1
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Super Member
    Joined
    Jan 2009
    Posts
    591
    Quote Originally Posted by mattyarnold View Post
    I need some help with a puzzle that has been really bugging me. I can't think of any solutions without getting more information, and I have no idea how to get that information.

    You have two identical circles that overlap (like a venn diagram) so that the center point of one circle is on the edge of the other circle. If the overlapping area is exactly 20000 square centimetres, what is the radius of the circles?

    Either answers or suggestions on how to reach an answer would be great. I know the information is vague... Hence the fact I can't do it ^^
    Make a sketch.
    .
    It should be obvious that the area is EACH segment is half of 20000 or 10,000.

    Since "the center point of one circle is on the edge of the other circle",
    the circles will intersect at a 60 degree angles from the center points line.
    You can prove this by the fact that the Radii are equal, so you have an equilateral triangle.
    The overlap of the circles will be an arc of 120 degrees.
    The sector-area of the arc of one circle is 1/3 the area of the entire circle: \dfrac{r^2\pi}{3}

    From that you need to subtract the area of an equilateral triangle with side length of r.
    The area of the equilateral triangle is \dfrac{r^2\sin(60deg)}{2}.

    The area of one segment is 10000.

    therefore:

    \dfrac{r^2\pi}{3} - \dfrac{r^2\sin(60deg)}{2} = 10000


    With a little be of work you can isolate r^2 and extract the square root.

    .
    multiply both side by 6
     2r^2\pi - 3r^2\sin(60deg) = 60000

    simplify for r^2
     r^2\left(2\pi - 3\sin(60deg)\right) = 60000

    &divide

     r^2 = \dfrac{60000}{ 2\pi - 3\sin(60deg)}

    use your calculator to finish
     r =\sqrt{ \dfrac{60000}{ 2\pi - 3\sin(60deg)} }

    .
    Does that help?
    Last edited by aidan; November 21st 2009 at 07:17 AM. Reason: type a type i typo
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Replies: 5
    Last Post: March 9th 2012, 10:00 PM
  2. Replies: 2
    Last Post: July 19th 2010, 03:01 AM
  3. Area of Segments
    Posted in the Geometry Forum
    Replies: 2
    Last Post: April 8th 2010, 11:06 AM
  4. Replies: 2
    Last Post: May 25th 2009, 12:28 PM
  5. Area of segments in a circle.
    Posted in the Geometry Forum
    Replies: 0
    Last Post: October 31st 2008, 05:56 PM

Search Tags


/mathhelpforum @mathhelpforum