# Thread: Proving points with position vectors form a square

1. ## Proving points with position vectors form a square

Prove that the points with the position vectors
rA = (2,2), rB = (-1,6), rC = (-5,3) and rD = (-2,-1) in the (xy)-plane are the vertices of a square.

2. Hello, knuckles1234!

Prove that the points with the position vectors:
$\displaystyle r_A = (2, 2),\; r_B = (-1,6),\;r_C = (-5, 3),\; r_D = (-2,-1)$ in the xy-plane
are the vertices of a square.
It helps if you plotted the points.

Code:
                B |
(-1,6)* |
|
C         |
(-5,3) *         |  A
|   *(2,2)
|
- - - - - - - - + - - - - - -
( -2,-1)*   |
D   |

$\displaystyle \begin{array}{ccccccc}\overrightarrow{AB} \:=\:\langle\text{-}3,4\rangle & \Rightarrow & |\overrightarrow{AB}| \:=\:\sqrt{\text{-}3)^2 + 4^2} \:=\:5 \\ \overrightarrow{DC} \:=\:\langle\text{-}3,4\rangle & \Rightarrow& |\overrightarrow{DC} \:=\:\sqrt{\text{-}3)^2 + 4^2} \:=\:5 \end{array}$

$\displaystyle \begin{array}{ccccccc}\overrightarrow{BC} \:=\:\langle\text{-}4,\text{-}3\rangle & \Rightarrow & |\overrightarrow{BC}| \:=\:\sqrt{(\text{-}4)^2 + (\text{-}3)^2} \:=\:5 \\ \overrightarrow{AD} \:=\:\langle\text{-}4,\text{-}3\rangle & \Rightarrow & |\overrightarrow{AD}| \:=\:\sqrt{(\text{-}4)^2 + (\text{-}3)^2} \:=\:5 \end{array}$

We have: .$\displaystyle AB = BC = CD = DA.$
. . Quadrilateral $\displaystyle ABCD$ is a rhombus.

$\displaystyle \overrightarrow{AB} \cdot \overrightarrow{AD} \:=\:\langle\text{-}3,4\rangle \cdot \langle \text{-}4,\text{-}3\rangle \:=\:12 - 12 \:=\:0$

. . Hence: .$\displaystyle \overrightarrow{AB} \perp \overrightarrow{AD}$

Therefore, $\displaystyle ABCD$ is a square.

,

,

,

,

,

# position vector of a square

Click on a term to search for related topics.