An acute-angled triangle has sides a, b, c and area t. The sides satisfy the equality abc=a+b+c. How can I prove, that
$\displaystyle 1< t \leq \frac{3 \cdot \sqrt{3}}{4}$
An acute-angled triangle has sides a, b, c and area t. The sides satisfy the equality abc=a+b+c. How can I prove, that
$\displaystyle 1< t \leq \frac{3 \cdot \sqrt{3}}{4}$