Suppose every nonempty subset of a partially ordered set has a least element. Does it follow that this set is well-ordered? [A well-order relation is a linear order with the property that every non-empty subset S has a least element]
Suppose every nonempty subset of a partially ordered set has a least element. Does it follow that this set is well-ordered? [A well-order relation is a linear order with the property that every non-empty subset S has a least element]