Results 1 to 4 of 4

Math Help - solving a nonhomogenous recursion

  1. #1
    Newbie
    Joined
    Apr 2009
    Posts
    5

    solving a nonhomogenous recursion

    Hello ,would you please solve the following non homogenous recursion:

    [{a[n+1]-a[n]
    =2n+3,a[0]=1},a,n]
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Moo
    Moo is offline
    A Cute Angle Moo's Avatar
    Joined
    Mar 2008
    From
    P(I'm here)=1/3, P(I'm there)=t+1/3
    Posts
    5,618
    Thanks
    6
    Hello,
    Quote Originally Posted by seamoh View Post
    Hello ,would you please solve the following non homogenous recursion:

    [{a[n+1]-a[n]
    =2n+3,a[0]=1},a,n]
    Note that a_n=a_n-a_{n-1}+a_{n-1}-a_{n-2}+\dots+a_1-a_0+a_0=a_0+\sum_{k=0}^{n-1} 2k+3=1+2\sum_{k=0}^{n-1} k+3\sum_{k=0}^{n-1} 1

    Then use this formula : \sum_{k=0}^n k=\frac{n(n+1)}{2} and you're done.

    Spoiler:
    1+2\sum_{k=0}^{n-1} k+3\sum_{k=0}^{n-1}=1+2\cdot\frac{n(n-1)}{2}+3n=1+n(n-1)+3n=(n+1)^2

    and we get the same result as Soroban
    Last edited by Moo; May 23rd 2009 at 10:08 AM. Reason: adding the spoiler
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    11,866
    Thanks
    745
    Hello, seamoh!

    Solve the following non-homogenous recursion:

    . . a(n+1)-a(n) \:=\: 2n+3\qquad a(0) \:=\:1
    We have: . a(n+1) \;=\;a(n) + 2n+3

    \begin{array}{cccccccccc} \text{Let }n = 0\!: & a(1) &=& a(0) + 2(0)+3 &=& 1 + 0 + 3 & \Longrightarrow &  a(1) \:=\:4 \\ \text{Let }n=1\!: & a(2) &=& a(1) + 2(1) + 3 &=& 4 + 2 + 3 & \Longrightarrow & a(2) \:=\:9 \\ \text{Let }n = 2\!: & a(3) &=& a(2) + 2(2) + 3 &=& 9 + 4 + 3 & \Longrightarrow & a(3) \:=\:16\end{array}

    The sequences seems to be squares.
    . . I would conjecture that: . a(n) \:=\:(n+1)^2



    \begin{array}{cccccc} \text{We have:} & a(n+1) &=& a(n) + 2n+3 & [1]\\ \text{Next term: } & a(n+2) &=& a(n+1) + 2(n+1)+3 & [2] \end{array}

    Subtract [1] from [2]: . a(n+2) - a(n+1) \;=\;a(n+1) - a(n) + 2


    \begin{array}{cccccc} \text{We have:} & a(n+2) &=& 2a(n+1) - a(n) + 2 & [3] \\ \text{Next term:} & a(n+3) &=&2a(n+2) - a(n+1) + 2 & [4] \end{array}

    Subtract [3] from [4]: . a(n+3) - a(n+2) \;=\;2a(n+2) - 2a(n+1) - a(n+1) + a(n)


    We have: . a(n+3) - 3a(n+2) + 3a(n+1) - a(n) \;=\;0

    Let a(n) \:=\:X^n\!:\;\;X^{n+3} - 3X^{n+2} + 3X^{n+1} - X^n \;=\;0

    Divide by X^{n}\!:\;\;X^3 - 3X^2 + 3X + 1 \:=\:0 \quad\Rightarrow\quad (X-1)^3 \:=\:0

    We have a triple root: . X \:=\:1,1,1

    The function has the form: . a(n) \:=\:A(1^n) + Bn(1^n) + Cn^2(1^n)
    . . That is: . a(n) \;=\;A + Bn + Cn^2


    We know the first three terms:

    . . \begin{array}{ccccccc} a(0) = 1\!: & A + B(0) + C(0^2) &=& 1 & \Rightarrow & A \;=\;1 \\ a(1) = 4\!: & A + B(1) + C(1^2) &=& 4 & \Rightarrow & A+B+C \:=\:4 \\ a(2) = 9\!: & A + B(2) + C(2^2) &=& 9 & \Rightarrow & A + 2B + 4C \:=\:9 \end{array}

    Solve the system: . A = 1,\;B = 2,\;C = 1 . . . Hence: . a(n) \:=\:1 + 2n + n^2


    . . Therefore: . a(n) \;=\;(n+1)^2

    Follow Math Help Forum on Facebook and Google+

  4. #4
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    11,866
    Thanks
    745
    Hello, seamoh!

    Solve the following non-homogenous recursion:

    . . a(n+1)-a(n) \:=\: 2n+3\qquad a(0) \:=\:1
    We have: . a(n+1) \;=\;a(n) + 2n+3

    \begin{array}{cccccccccc} \text{Let }n = 0\!: & a(1) &=& a(0) + 2(0)+3 &=& 1 + 0 + 3 & \Longrightarrow &  a(1) \:=\:4 \\ \text{Let }n=1\!: & a(2) &=& a(1) + 2(1) + 3 &=& 4 + 2 + 3 & \Longrightarrow & a(2) \:=\:9 \\ \text{Let }n = 2\!: & a(3) &=& a(2) + 2(2) + 3 &=& 9 + 4 + 3 & \Longrightarrow & a(3) \:=\:16\end{array}

    The sequences seems to be squares.
    . . I would conjecture that: . n+1)^2" alt="a(n) \:=\n+1)^2" />


    \begin{array}{cccccc} \text{We have:} & a(n+1) &=& a(n) + 2n+3 & [1]\\ \text{Next term: } & a(n+2) &=& a(n+1) + 2(n+1)+3 & [2] \end{array}

    Subtract [1] from [2]: . a(n+2) - a(n+1) \;=\;a(n+1) - a(n) + 2


    \begin{array}{cccccc} \text{We have:} & a(n+2) &=& 2a(n+1) - a(n) + 2 & [3] \\ \text{Next term:} & a(n+3) &=&2a(n+2) - a(n+1) + 2 & [4] \end{array}

    Subtract [3] from [4]: . a(n+3) - a(n+2) \;=\;2a(n+2) - 2a(n+1) - a(n+1) + a(n)


    We have: . a(n+3) - 3a(n+2) + 3a(n+1) - a(n) \;=\;0

    Let a(n) \:=\:X^n\!:\;\;X^{n+3} - 3X^{n+2} + 3X^{n+1} - X^n \;=\;0

    Divide by X^{n}\!:\;\;X^3 - 3X^2 + 3X + 1 \:=\:0 \quad\Rightarrow\quad (X-1)^3 \:=\:0

    We have a triple root: . X \:=\:1,1,1

    The function has the form: . a(n) \:=\:A(1^n) + Bn(1^n) + Cn^2(1^n)
    . . That is: . a(n) \;=\;A + Bn + Cn^2


    We know the first three terms:

    . . \begin{array}{ccccccc} a(0) = 1\!: & A + B(0) + C(0^2) &=& 1 & \Rightarrow & A \;=\;1 \\ a(1) = 4\!: & A + B(1) + C(1^2) &=& 4 & \Rightarrow & A+B+C \:=\:4 \\ a(2) = 9\!: & A + B(2) + C(2^2) &=& 9 & \Rightarrow & A + 2B + 4C \:=\:9 \end{array}

    Solve the system: . A = 1,\;B = 2,\;C = 1 . . . Hence: . a(n) \:=\:1 + 2n + n^2


    . . Therefore: . a(n) \;=\;(n+1)^2

    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. nonhomogenous equations
    Posted in the Differential Equations Forum
    Replies: 1
    Last Post: April 14th 2010, 05:40 PM
  2. Solving a nonhomogenous D.E.
    Posted in the Differential Equations Forum
    Replies: 3
    Last Post: February 3rd 2010, 06:15 AM
  3. Doubt about solving a recursion
    Posted in the Discrete Math Forum
    Replies: 0
    Last Post: June 2nd 2009, 09:15 AM
  4. Nonhomogenous Linear Equation
    Posted in the Differential Equations Forum
    Replies: 4
    Last Post: February 27th 2009, 04:24 PM
  5. Replies: 2
    Last Post: May 13th 2008, 09:03 PM

Search Tags


/mathhelpforum @mathhelpforum