Originally Posted by
pberardi Below f is a function from a set A to a set B, and g is a function from the set B to a set C.
Property 1: If f and g are surjections, then gf is a surjection.
Proof of Property 1:
Let z an arbitrary element in C.
Then since g is a surjection, there is an element y in B such that z = g(y). Then since f is a surjection, there is an element x in A such that y = f(x). Hence by the definition of composite function, z = g(f(x)), that is z = gf(x). Hence gf is a surjection. QED
I took this off of a website. I am wondering about its accuracy. Particularly the red line. Shouldn't it be something to the effect:
Since g is a surjection, there is an element y in B such that z = g(y)?