
Generate binary data
generate binary data b_k using randint.
2. define the sampling time, and the data rate. For example, data rate can be R=10kbps, T=1/R, and sampling time Ts=T/40;
3. according to the above define your pulse shape (wave form of the different line codes).
4. obtain the x(t)=\sum_{k=100}^{100} d_k p(tkT)
d_k should be correctly mapped from the b_ks generated above.
5. plot the resulting x(t) for the different line codes.
6. obtain the autocorrelation function of x(t) (you may need to average over many realization (1050 realizations should be enough to get smooth curve).
7. obtain the power spectral density by performing FFT of the autocorrelation function.
8. plot the power spectral density.
solution ::confused: :confused: :confused: :eek: :confused: :confused:
function f1=unipolar_nrz(b,R,Ns)
b=randint(1,100);
R=10000; %data rate: 10kbps
Tb=1/R; %bit duration
Nb=length(b);
Ts=Tb/4000;
Fs=1/Ts;
Ns=100; %40 samples/bit
d=b;
pulse=ones(1,Ns);
t=0:Ts:((Ns*Nb)*Ts)Ts;
x=kron(d,pulse); %Kronecker tensor product
%y1 = wgn(100,1,0);
plot(t,x)
%y= X+ 0.00001*y1;
D= pwelch(x,33,32,[],Fs,'twosided');
hold
%D2=D+randn;
plot(fftshift(D))
end
:confused: :confused: :confused:
>>b = rand(100,1);
>>R=10000;
>>Tb=1/R;
>>Ts=Tb/40;
>>Nb=length(b);
>>Ns=40;
>>pulse =[ones(1,Ns/2), ones(1,Ns/2)];
>>t=0:Ts:((Ns*Nb).*Ts)Ts;
>>f=0:0.05*Rb:2*Rb;
>>x=f*Tb;
>>d=b;
>>x=kron(d,pulse);
:confused: :confused: :confused:
n=1
m=1
b = randint (n)
b = randint (n,m)
b = randint (n,m,[0:1])
R=10000
T=1/R
%sampling time
Ts=T/40
if any can complete and correct , i am ganna be so plzd