Truth value and Logical equivalents

Determine the truth value

1a) $\displaystyle \forall x:(\exists y:(x=y \rightarrow x > y))$

1b) $\displaystyle \exists x:(\forall y:(x=y \rightarrow x > y))$

Logical equivalents?

2a) $\displaystyle \forall x: ( P(x) \vee Q(x) )$ and $\displaystyle (\forall x: P(x)) \vee (\forall x: Q(x))$

2b) $\displaystyle \forall x: ( P(x) \wedge Q(x) )$ and $\displaystyle (\forall x: P(x)) \wedge (\forall x: Q(x))$

2c) $\displaystyle \exists x: ( P(x) \wedge Q(x) )$ and $\displaystyle (\exists x: P(x)) \wedge (\exists x: Q(x))$

2d) $\displaystyle \forall x: ( P(x) \rightarrow Q(x) )$ and $\displaystyle (\forall x: P(x)) \rightarrow (\forall x: Q(x))$

Please and thanks,

James