Results 1 to 4 of 4

Math Help - Total Ordering on Real Function

  1. #1
    Global Moderator

    Joined
    Nov 2005
    From
    New York City
    Posts
    10,616
    Thanks
    9

    Total Ordering on Real Function

    I been trying to find a total ordering on [0,1]^{[0,1]}, the set of all functions from [0,1]\mapsto [0,1]. This cardinality of this set is 2^{ 2^{\aleph_0}} > 2^{\aleph_0}. I tried a few ideas and they all failed. I happen to know a total ordering exists by the axiom of choice (this is correct, right?). But I am trying to find an explicit ordering on this set for a counterexample.
    Follow Math Help Forum on Facebook and Google+

  2. #2
    MHF Contributor

    Joined
    Aug 2006
    Posts
    18,793
    Thanks
    1688
    Awards
    1
    One of the most important consequences of the Axiom of Choice is the Well –Ordering Theorem: Every set can be well ordered. However, the proof is an outstanding example of a nonconstructive proof. That is, the proof does not give any indication of how the order relation is constructed. For example, it is not known how the set of real numbers can be well ordered.
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Global Moderator

    Joined
    Nov 2005
    From
    New York City
    Posts
    10,616
    Thanks
    9
    Quote Originally Posted by Plato View Post
    One of the most important consequences of the Axiom of Choice is the Well –Ordering Theorem: Every set can be well ordered. However, the proof is an outstanding example of a nonconstructive proof. That is, the proof does not give any indication of how the order relation is constructed. For example, it is not known how the set of real numbers can be well ordered.
    For homework, I have the following problem:
    If (P,<) is a totally ordered set which has a countable dense subset then |P|\leq 2^{\aleph_0}
    .

    At first I tried proving this but failed. I assume my textbook had a mistake in it. Here is the counterexample: Let P_1 = [0,1]^{[0,1]} which is totally ordered (okay, so we need the axiom of choice). Let P_2 =\mathbb{Q} ordered in the natural way. Define P = P_1\cup P_2 where any element in P_2 is less than any element in P_1. This ordering is a total ordering and it has a countable dense subset, i.e. P_2, yet |P| > 2^{\aleph_0}. Thus, it is wrong.

    But I am unsure of this counterexample. Because all the set theory we done so far never used the axiom of choice. Maybe without the axiom of choice this statement is true? Can that be? Or if it is possible to construct counterexample using axiom of choice (eventhough we never used it before) it must mean this problem is faulty. This is the reason why I tried to find an explicit ordering on the real functions, but that seems really hard to do. Do you happen to know of any total ordering for sets with cardinality greater than the countinuum?

    This is Mine 93th Post!!!
    Last edited by ThePerfectHacker; April 13th 2008 at 09:38 AM.
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Global Moderator

    Joined
    Nov 2005
    From
    New York City
    Posts
    10,616
    Thanks
    9
    How about the this. I been trying to find an explicit total-ordering on [0,1]^{[0,1]}. I found a way how to do that if we can find an explicit well-ordering of the interval [0,1].

    Suppose that we can explicitly well-order [0,1] call it <. Let f,g be elements of [0,1]^{[0,1]}. Say f\not = g then the set \Delta(f,g) = \{ x \in [0,1] : f(x) \not = g(x) \} is a non-empty subset of [0,1] which means there is a least element x_0. If f(x_0) < g(x_0) then we define f \prec g. This defines a total ordering on \left( [0,1]^{[0,1]}, \prec \right). This reduces the problem to well-ordering the continuum. So are there any well-known (pun) well-orderings of the continuum?
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Total cost of box as a function of x?
    Posted in the Pre-Calculus Forum
    Replies: 3
    Last Post: September 25th 2011, 08:53 PM
  2. Prove that R is a total ordering relation on A
    Posted in the Differential Geometry Forum
    Replies: 3
    Last Post: September 26th 2010, 06:05 PM
  3. Equivalence relation and total ordering problem
    Posted in the Discrete Math Forum
    Replies: 3
    Last Post: June 27th 2010, 05:48 PM
  4. Demand and total cost function
    Posted in the Business Math Forum
    Replies: 1
    Last Post: November 21st 2008, 10:53 PM
  5. Need Help Graphing Total Revenue Function
    Posted in the Pre-Calculus Forum
    Replies: 4
    Last Post: October 17th 2008, 07:56 PM

Search Tags


/mathhelpforum @mathhelpforum