1. ## Elimination argument

Give a truth table which shows that the Elimination argument
p V q ¬ p
qis a valid logical argument.

ok so this is what I've done

p..q......pvq.......¬p.......q

T..T..........T...........F.........T
T..F..........T...........F.........F
F..T..........T...........T.........T
F..F..........F...........T..........F

In the Premises the critical row is the 3rd in each of the other rows we have false values on the premises so by eliminating them we are left with the 3rd row proving a logical argument of
q.
Is this correct ? thanks

2. ## Re: Elimination argument

Originally Posted by bee77
Give a truth table which shows that the Elimination argument
p V q ¬ p ∴ q is a valid logical argument.
Here is your argument: $[(p\vee q)\wedge \neg p]\to q.$

HERE is the truthtable. you must fill in the gaps.

3. ## Re: Elimination argument

Thanks Plato I obviously missed the ∧ symbol and the -> makes sense
cheers

4. ## Re: Elimination argument

p..q......pvq.......¬p........|(.pvq )∧ ¬p|....|(pvq) ∧ ¬p|->q

T..T..........T...........F...........F........... ........T............
T..F..........T...........F...........T........... ........T............
F..T..........T...........T...........T........... ........T...........
F..F..........F...........T...........F........... ........T .......... Tautology