How can both the above theorum and its converse be expressed?
a. If B then A
b. If not B then not A
c. If not A then not B
d. A if and only if B
"If A then B"
CONVERSE: If B then A.
CONTRAPOSITIVE: If not B, then not A. (this is equivalent to the theorem itself)
CONTRAPOSITIVE OF THE CONVERSE: If not A then not B.