Theorem (proof that) a) A Δ B = AÚ B if A ∩ B= Φ b) A ∩ (B Ù C) = (A ∩ B) Ù (A ∩ C) please help me. thank you.
Follow Math Help Forum on Facebook and Google+
Originally Posted by reza95 Theorem (proof that) a) A Δ B = AÚ B if A ∩ B= Φ b) A ∩ (B Ù C) = (A ∩ B) Ù (A ∩ C) For a) $A\Delta B=(A\setminus B)\cup(B\setminus A)$ note that if $A\cap B=\emptyset$ then $(A\setminus B)=A$. For b) Recall $A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$.
View Tag Cloud