# Thread: Determine whether the relations represented by the directed graphs are 1 of these

1. ## Determine whether the relations represented by the directed graphs are 1 of these

Determine whether the relations represented by the directed graphs shown in 27 and 28 are reflexive, irreflexive, symmetric, antisymmetric, asymmetric, and/or transitive. (graphs are in the attachment if you can't see it below)

Are both of the graphs, reflexive, symmetric, and transitive?

In graph 28, the left most point on the top is missing it's letter, which is the letter a.

2. ## Re: Determine whether the relations represented by the directed graphs are 1 of these

Originally Posted by lamentofking
Determine whether the relations represented by the directed graphs shown in 27 and 28 are reflexive, irreflexive, symmetric, antisymmetric, asymmetric, and/or transitive. (graphs are in the attachment if you can't see it below)

Are both of the graphs, reflexive, symmetric, and transitive?
In the graph #27 is c related to c?

3. ## Re: Determine whether the relations represented by the directed graphs are 1 of these

Originally Posted by Plato
In the graph #27 is c related to c?
What do you mean is c related to c?

4. ## Re: Determine whether the relations represented by the directed graphs are 1 of these

Originally Posted by lamentofking
What do you mean is c related to c?
If you listed that relation as a set of ordered pairs would that set contain $\displaystyle (c,c)~?$

5. ## Re: Determine whether the relations represented by the directed graphs are 1 of these

"Reflexive" requires that any member of the set be related to it self. That is signaled in the graphs you show by a loop from point x back to that same point. That is Plato's point.

6. ## Re: Determine whether the relations represented by the directed graphs are 1 of these

Originally Posted by Plato
If you listed that relation as a set of ordered pairs would that set contain $\displaystyle (c,c)~?$
Yes I believe so.

7. ## Re: Determine whether the relations represented by the directed graphs are 1 of these

Originally Posted by lamentofking
Yes I believe so.