Hello,
I'm having abit of difficulty trying to figure out what needs to be done here, could somebody point in the right direction
Best
You are given $\displaystyle {J_n} = \left[ {0,1-\frac{1}{{n + 1}}} \right)$
For examples:
$\displaystyle J_1\cup J_2\cup J_3=\left[ {0,\frac{1}{{2}}} \right)\cup\left[ {0,\frac{2}{{3}}} \right)\cup\left[ {0,\frac{3}{{4}}} \right)=\left[ {0,\frac{3}{{4}}} \right)$
$\displaystyle J_1\cap J_2\cap J_3=\left[ {0,\frac{1}{{2}}} \right)\cap\left[ {0,\frac{2}{{3}}} \right)\cap\left[ {0,\frac{3}{{4}}} \right)=\left[ {0,\frac{1}{{2}}} \right)$
Now can you find $\displaystyle \bigcup\limits_{n = 1}^\infty {{J_n}} \,\& \,\bigcap\limits_{n = 1}^\infty {{J_n}}~? $