How many subgraphs with at least one vertex does K3 (a complete graph with 3 vertices) have?

I know that K3 is a triangle with vertices a, b, and c. From asking for help elsewhere I was told the formula for the number of subgraphs in a complete graph with n vertices is 2^(n(n-1)/2)

In this problem that would give 2^3 = 8.

However from trying to draw all the subgraphs out by hand using this definition: All the edges and vertices ofG might not be present inS; but if a vertex is present inS, it has a corresponding vertex inG and any edge that connects two vertices inS will also connect the corresponding vertices inG. All of these graphs are subgraphs of the first graph.

I was up to 14 subgraphs. From what I understand, the graph itself is a subgraph of K3 (1), the graph with 3 vertices and no edges is a subgraph of K3 (2), a by itself is a subgraph of K3 (3), b by itself is a subgraph of K3 (4), c itself is a subgraph of K3 (5), a and b connected is a subgraph of K3(6), a and c connected is a subgraph of K3(7), a and b by themselves are a subgraph of K3 (8), a and c by themselves are subgraph of K3 (9), etc. I'm failing to understand why some of the graphs I listed are not subgraphs of K3, since they either preserve some of the vertices in S, and any edges in the subgraphs listed are also preserved in K3.

Any help is greatly appreciated.