Hello,

I have a linear order relation defined on the product of set of complex numbers

I can prove that this relation is a linear order that's dense and without endpoints. But I have a problem with this question:

Is this order isomorphic with ? is a normal greater or equal relation on the set of real numbers.

For order to be isomorphic there has to exist a bijection between two sets that preserves the relation between the elements, meaning that if there's a bijection then for some if . Do I have to create a bijection , because I have trouble coming up with one, or is there a simpler way to answer this question?