Hello,

I have three relations on the set of natural numbers defined like this.

1) is in relation with , when can be divided by .

2) is in relation with , when can be divided by .

3) is in relation with , when is equal to .

I need to find such that is a positive number and when put into those relations they are equivalent.

So for the first one I think that can only be either 1 or 2, because it has to be reflexive, and any number is divisible by 1, and any sum of two same numbers is divisible by two.

For the second one k can be any number except 0 because every number can divide 0, which we get when we test the reflexiveness of the relation, and for any number we can find such that m is a sum of any multiple of k and MOD , and then is divisible by k.

In the third one the only possible value of k is 0, because the relation has to be reflexive and when we substract two of the same numbers we get a 0. When is 0 the relation is also symetrical and transitive.

Is this correct?