Use Boolean algebra to show that ((p^q) implies (p implies q)) is a contradiction. do not use truth tables, thanks.
different question!!
I get a tautology too:
$\displaystyle ((p\wedge q) \longrightarrow (p \longrightarrow q))$
$\displaystyle \equiv (-(p\wedge q)\vee (-p \vee q))$
$\displaystyle \equiv (-p\vee-q)\vee (-p\vee q)$
$\displaystyle \equiv -p\vee T$
$\displaystyle \equiv T$
Therefore it's a tautology.