Results 1 to 3 of 3

Math Help - The number of integers are infinite and the integers are in infinite set

  1. #1
    Member
    Joined
    Sep 2010
    Posts
    151
    Thanks
    1

    The number of integers are infinite and the integers are in infinite set

    Why is The number of integers are infinite, and the integers are in infinite set?

    Seems like something simple. ive been looking up the cantor diagrams cause i think this proves it. but alas im am unsure how to interpret it.
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Member
    Joined
    Aug 2011
    Posts
    127

    Re: The number of integers are infinite and the integers are in infinite set

    "Infinite" is defined differently in different situations. In set theory, we usually define "an infinite set" as follows. The set of all natural numbers is the minimal inductive set containing zero. Every member of this set is a natural number. An infinite set is then defined as a set for which there exists no bijection with any natural number.

    Although the set of natural numbers is infinite, each of its members is finite. There is a big "gap" between the infinite set and each of its finite members, in a sense.

    Conceptually, infinite means "beyond exhaustive", and it captures the idea that "there is no largest natural number", for example. But there are other ways to define it which do not require prior construction of objects. A Dedekind-infinite set is defined as a set for which there is an injection from that set onto a proper subset. For example, since the set of all natural numbers is infinite, we can pair them up so that all numbers are accounted for in one copy but not the other: {(0, 0), (1, 1), (2, 4), (3, 9), (4, 16), ... }. However, this definition has a slight unusual twist. Without AC, it is possible for a Dedekind-finite set to be infinite! This can happen because we can describe infinite sets that are not well-ordered, but for which we have no method to define an auto-injection.
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Grand Panjandrum
    Joined
    Nov 2005
    From
    someplace
    Posts
    14,972
    Thanks
    4

    Re: The number of integers are infinite and the integers are in infinite set

    Quote Originally Posted by Aquameatwad View Post
    Why is The number of integers are infinite, and the integers are in infinite set?

    Seems like something simple. ive been looking up the cantor diagrams cause i think this proves it. but alas im am unsure how to interpret it.
    (Dedekin) Infinite set: A set which has a proper subset for which there exists one-to-one and onto mapping from the subset to the set itself.

    (In ZF+CC this is equivalent to the usual definition of infinite set)

    CB
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Replies: 0
    Last Post: November 14th 2011, 05:18 PM
  2. Replies: 2
    Last Post: November 17th 2010, 08:26 PM
  3. Replies: 7
    Last Post: August 3rd 2010, 01:31 PM
  4. Matrix of integers whose inverse is full of integers
    Posted in the Advanced Algebra Forum
    Replies: 2
    Last Post: March 19th 2010, 02:02 PM
  5. Replies: 4
    Last Post: February 24th 2008, 03:08 PM

Search Tags


/mathhelpforum @mathhelpforum