Let n be a natural number. Make a conjecture about the nth derivative of the function f(x) = e^(ax). That is, what is the nth derivative of e^(ax).

Then use mathematical induction to prove your conjecture.

My conjecture is as follows: For every natural number a, the nth derivative of the function f(x) = e^ax is f^n (x) = a^n (e^(ax)).

I have proved the initial step P(1):

f'(x)=ae^(ax) = a^1 e^(ax) so that ae^(ax) = ae^(ax). This proves the initial step. Now here is where I am having trouble proving the inductive step, that is P(k+1) is true. Here is what I have so far

ae^(ax) = a^(n+1) e^(ax)

ae^(ax) = a*a^n*e^ax

I used the fact that a^(n+1) = a*a^n... but I don't know where to go from here, or how to prove the inductive step... any help please?