Consider a first-order language with ternary predicate T and equality predicate =. We define the formulas F1, F2, F3 as follows.

F1: ∀x∀y∃zT(x,y,z).

F2: ∀x∀y∀z∀w ((T(x,y,z) ∧ T(y,x,w)) → =(z,w))

F3: ∀x∀y∀z (T(x,y,z) → T(y,x,z)))

a) Prove F1 ∧ F2 logically implies F3

b) Prove F1 ∧ F3 does not logically imply F2

How do I start this, I am very lost here...