Results 1 to 6 of 6

Math Help - Math Challenge

  1. #1
    Newbie
    Joined
    Feb 2006
    Posts
    3

    Math Challenge

    This is a challege my teacher gave to me and i just cant figure it out. Can anyone help me on this one?


    A circle of radius 1 inch is inscribed in an equilateral triangle. A smaller circle is inscribed at each vertex, tangent to the circle and to two sides of the triangle. If this process is continued indefinetly, what is the SUM of the circumferences of all the circles?
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Grand Panjandrum
    Joined
    Nov 2005
    From
    someplace
    Posts
    14,972
    Thanks
    4
    Quote Originally Posted by lil_josh
    This is a challege my teacher gave to me and i just cant figure it out. Can anyone help me on this one?


    A circle of radius 1 inch is inscribed in an equilateral triangle. A smaller circle is inscribed at each vertex, tangent to the circle and to two sides of the triangle. If this process is continued indefinetly, what is the SUM of the circumferences of all the circles?
    Its infinite. That is if you assume that you are adding extra sides to form smaller
    triangle associated with your new circles at each stage.

    The circumference of the new circles at each stage is one third of the
    circumference at the stage before, but there are three times as many
    so at each stage we are adding the same increment to the total circumference.

    RonL
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Newbie
    Joined
    Feb 2006
    Posts
    3
    WOW! I never would of got that. Good job man!
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Global Moderator

    Joined
    Nov 2005
    From
    New York City
    Posts
    10,616
    Thanks
    9
    This reminds me of fractals.
    Follow Math Help Forum on Facebook and Google+

  5. #5
    Grand Panjandrum
    Joined
    Nov 2005
    From
    someplace
    Posts
    14,972
    Thanks
    4
    Quote Originally Posted by lil_josh
    WOW! I never would of got that. Good job man!
    Don't just accept what I say, check that you agree with what I
    have said. We all can meke mistakes

    RonL
    Follow Math Help Forum on Facebook and Google+

  6. #6
    Newbie
    Joined
    Feb 2006
    Posts
    3
    Alright I'll try it.
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Math Challenge Web-site
    Posted in the Math Challenge Problems Forum
    Replies: 2
    Last Post: November 26th 2009, 08:39 PM
  2. Challenge #1
    Posted in the Math Challenge Problems Forum
    Replies: 4
    Last Post: October 19th 2009, 08:23 PM
  3. Replies: 7
    Last Post: October 11th 2009, 10:45 AM

Search Tags


/mathhelpforum @mathhelpforum