Thread: A set of numbers which i dont understand.

1. A set of numbers which i dont understand.

30303 30306 30309 30296
30308 30297 30302 30307
30298 30311 30304 30301
30305 30300 30299 30310

this chart, or watever it is was extracted from an ancient manuscript, i dont know what it means or what it holds inside it, but its been made like a 1000 years back,...

All columns sum up to 121214, all diagonals, all rows, too...

the product of two pairs are also the same...

Is there anything special else?, have i found the code to the world?

2. Re: mr fantastic set of numbers which i dont understand...

Originally Posted by khamaar
30303 30306 30309 30296
30308 30297 30302 30307
30298 30311 30304 30301
30305 30300 30299 30310

this chart, or watever it is was extracted from an ancient manuscript, i dont know what it means or what it holds inside it, but its been made like a 1000 years back,...

All columns sum up to 121214, all diagonals, all rows, too...

the product of two pairs are also the same...

Is there anything special else?, have i found the code to the world?
I'm afraid that you are serious...

3. Re: A fantastic set of numbers which i dont understand. Please, all of you, view this

You mean there is really something in it?, I sure am serious by the way....Should we invest time on finding the properties of this set of numbers, and their arrangement?

4. Re: A fantastic set of numbers which i dont understand. Please, all of you, view this

Hello, khamaar!

. . $\begin{array}{cccc}30303 & 30306 & 30309 & 30296 \\ 30308 & 30297 & 30302 & 30307 \\ 30298 & 30311 & 30304 & 30301 \\ 30305 & 30300 & 30299 & 30310 \end{array}$

This chart, or watever it is, was extracted from an ancient manuscript.
i don't know what it means or what it holds inside it,
but it was made like a 1000 years ago.

All columns sum up to 121,214, all diagonals, all rows, too.

The product of two pairs are also the same ... . What two pairs?

Is there anything special else?
Have i found the code to the world?

The bad news: it is simply a Magic Square.

Subtract 30,295 from each number and we have:

. . . . . . $\boxed{\begin{array}{cccc}8 & 11 & 14 & 1 \\ 13 & 2 & 7 & 12 \\ 3 & 16 & 9 & 6 \\ 10 & 5 & 4 & 15 \end{array}}$

composed of the integers 1 to 16,
. . totaling 34 on each row, column and diagonal.

The good news: it is an extraordinary Magic Square.
. . The total of 34 can be found in many patterns.

The four corners cells also total 34.

. . . . . . . . $\boxed{\begin{array}{cccc} 8 & \cdot & \cdot & 1 \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ 10 & \cdot & \cdot & 15 \end{array}}$

Every 2-by-2 grid totals 34.

. . $\boxed{\begin{array}{cccc} 8 & 11 & \cdot & \cdot \\ 13 & 2 & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \end{array}} \qquad \boxed{\begin{array}{cccc}\cdot & 11 & 14 & \cdot \\ \cdot & 2 & 7 & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \end{array}} \qquad \boxed{\begin{array}{cccc} \cdot & \cdot & 14 & 1 \\ \cdot & \cdot & 7 & 12 \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \end{array}}$

. . $\boxed{\begin{array}{cccc} \cdot & \cdot & \cdot & \cdot \\ 13 & 2 & \cdot &\cdot \\ 3 & 16 & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \end{array}} \qquad \boxed{\begin{array}{cccc}\cdot & \cdot & \cdot & \cdot \\ \cdot & 2 & 7 & \cdot \\ \cdot & 16 & 9 & \cdot \\ \cdot & \cdot & \cdot & \cdot \end{array}} \qquad \; \boxed{\begin{array}{cccc} \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & 7 & 12 \\ \cdot & \cdot & 9 & 6 \\ \cdot & \cdot & \cdot & \cdot \end{array}}$

. . $\boxed{\begin{array}{cccc} \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ 3 & 16 & \cdot & \cdot \\ 10 & 5 & \cdot & \cdot \end{array}} \qquad \boxed{\begin{array}{cccc} \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & 16 & 9 & \cdot \\ \cdot & 5 & 4 & \cdot \end{array}} \qquad \; \boxed{\begin{array}{cccc} \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & 9 & 6 \\ \cdot & \cdot & 4 & 15 \end{array}}$

These also total 34.

. . $\boxed{\begin{array}{cccc} 8 & 11 & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ 10 & 5 & \cdot & \cdot \end{array}} \qquad \boxed{\begin{array}{cccc}\cdot & 11 & 14 & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & 5 & 4 & \cdot \end{array}} \qquad \boxed{\begin{array}{cccc} \cdot & \cdot & 14 & 1 \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & 4 & 15 \end{array}}$

. . $\boxed{\begin{array}{cccc} 8 & \cdot & \cdot & 1 \\ 13 & \cdot & \cdot & 12 \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \end{array}} \qquad \boxed{\begin{array}{cccc}\cdot & \cdot & \cdot & \cdot \\ 13 & \cdot & \cdot & 12 \\ 3 & \cdot & \cdot & 6 \\ \cdot & \cdot & \cdot & \cdot \end{array}} \qquad \boxed{\begin{array}{cccc} \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ 3 & \cdot & \cdot & 6 \\ 10 & \cdot & \cdot & 15 \end{array}}$

Also these "diagonals".

. . $\boxed{\begin{array}{cccc} 8 & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & 12 \\ \cdot & \cdot & 9 & \cdot \\ \cdot & 5 & \cdot & \cdot \end{array}} \qquad \boxed{\begin{array}{cccc}\cdot & 11 & \cdot & \cdot \\ 13 & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & 6 \\ \cdot & \cdot & 4 & \cdot \end{array}} \qquad \boxed{\begin{array}{cccc} \cdot & \cdot & 14 & \cdot \\ \cdot & 2 & \cdot & \cdot \\ 3 & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & 15 \end{array}}$

. . $\boxed{\begin{array}{cccc} \cdot & \cdot & \cdot & 1 \\ 13 & \cdot & \cdot & \cdot \\ \cdot & 16 & \cdot & \cdot \\ \cdot & \cdot & 4 & \cdot \end{array}} \qquad \boxed{\begin{array}{cccc}\cdot & \cdot & 14 & \cdot \\ \cdot & \cdot & \cdot & 12 \\ 3 & \cdot & \cdot & \cdot \\ \cdot & 5 & \cdot & \cdot \end{array}}\qquad \boxed{\begin{array}{cccc} \cdot & 11 & \cdot & \cdot \\ \cdot & \cdot & 7 & \cdot \\ \cdot & \cdot & \cdot & 6 \\ 10 & \cdot & \cdot & \cdot \end{array}}$

5. Re: A fantastic set of numbers which i dont understand. Please, all of you, view this

Thank You very much for the information.

These numbers, infact are called "naqsh".....A code which represents a whole chapter of the Quran , the Holy Book of Islam.

This naqsh in particular belongs to Chapter Al-Rahman, we used to have them written in islamic books, but we didnt understand where these numbers came from. This was a small "magic square" as u call it. For Bigger chapters, there are huge such patterns, i have all of them...And will share if u want...

I am quite amazed how these Naqshs were made, and, quite curious as to how they'd represent the chapter.....

Thanks for the info...