We have a integer sequence: $\displaystyle a_{1}$, $\displaystyle a_{2}$, $\displaystyle a_{3}$, .... and we have

$\displaystyle a_{1}=1$

$\displaystyle a_{2}=2$.

$\displaystyle a_{n}=3a_{n - 1}+5a_{n - 2}$

$\displaystyle n=3,4,5....$

Does exist integer number $\displaystyle x\geqslant 2$ such that $\displaystyle a_{x}$ is a divisor of $\displaystyle a_{x + 1}a_{x + 2}$ ??