Originally Posted by

**Sudharaka** Dear fysikbengt,

$\displaystyle \Delta x_{n+1}=V\left(\frac{l-\displaystyle\sum_{0}^{n}\Delta x_{n}}{v_{0}+nV}\right)$

Therefore, $\displaystyle \Delta x_{n}=V\left(\frac{l-\displaystyle\sum_{0}^{n-1}\Delta x_{n}}{v_{0}+(n-1)V}\right)$

$\displaystyle \Delta x_{n+1}-\Delta x_{n}=V\left(\frac{l-\displaystyle\sum_{0}^{n}\Delta x_{n}}{v_{0}+nV}\right)-V\left(\frac{l-\displaystyle\sum_{0}^{n-1}\Delta x_{n}}{v_{0}+(n-1)V}\right)$

Since, $\displaystyle V<<v_0~;~$$\displaystyle v_0+nV\approx{v_0+(n-1)V}$

$\displaystyle \Delta x_{n+1}-\Delta x_{n}=V\left(\frac{l-\displaystyle\sum_{0}^{n}\Delta x_{n}}{v_{0}+nV}\right)-V\left(\frac{l-\displaystyle\sum_{0}^{n-1}\Delta x_{n}}{v_{0}+nV}\right)=-\left(\frac{V \Delta x_{n}}{v_{0}+nV}\right)$

So I think you should have a the minus sign for your last expression.